On a New Type of Unitoid Matrices
- 作者: Ikramov K.D.1
-
隶属关系:
- Faculty of Computational Mathematics and Cybernetics, Moscow Lomonosov State University
- 期: 卷 63, 编号 6 (2023)
- 页面: 891-895
- 栏目: General numerical methods
- URL: https://rjonco.com/0044-4669/article/view/664827
- DOI: https://doi.org/10.31857/S0044466923060091
- EDN: https://elibrary.ru/UYPHCY
- ID: 664827
如何引用文章
详细
The cosquare of a nonsingular complex matrix A is defined as A in theory of A-congruences and as A in theory of Hermitian congruences. There is one more product of a similar kind, namely, A. In this paper, we discuss the following question: Is it possible to interpret such a product as a cosquare within some theory of congruences? What is this theory and how does look its canonical form?
作者简介
Kh. Ikramov
Faculty of Computational Mathematics and Cybernetics, Moscow Lomonosov State University
编辑信件的主要联系方式.
Email: ikramov@cs.msu.su
Moscow, Russia
参考
- Horn R.A., Sergeichuk V.V. A regularization algorithm for bilinear and sesquilinear forms // Linear Algebra Appl. 2006. V. 412. P. 380–395.
- Икрамов Х.Д. О конгруэнтном выделении жордановых блоков из вырожденной квадратной матрицы // Сиб. журнал вычисл. матем. 2018. Т. 21. С. 255–258.
- Horn R.A., Johnson C.R. Matrix Analysis. 2nd ed. Cambridge: Cambridge Univer. Press, 2013.
- Horn R.A., Merino D.I. A real-coninvolutory analog of the polar decomposition // Linear Algebra Appl. 1993. V. 190. P. 209–227.
- Хорн Р., Джонсон Ч. Матричный анализ. М.: Мир, 1989.
补充文件
