Quasi-Solution Method and Global Minimization of the Residual Functional in Conditionally Well-Posed Inverse Problems

封面

如何引用文章

全文:

开放存取 开放存取
受限制的访问 ##reader.subscriptionAccessGranted##
受限制的访问 订阅存取

详细

A class of conditionally well-posed problems characterized by a Hölder conditional stability estimate on a convex compact set in a Hilbert space is considered. The operator of the direct problem and the right-hand side of the equation are given with errors, and the derivatives of the exact and perturbed operators are not assumed to be close to each other. The convexity and single-extremality of the residual functional of the quasi-solution method are examined. For this functional, each of its stationary points on the set of conditional well-posedness that lies not too far from the sought solution of the original inverse problem is shown to belong to a small neighborhood of the solution. The diameter of this neighborhood is estimated in terms of the errors in the input data. It is shown that this neighborhood is an attractor of the iterations of the gradient projection method, and the convergence rate of the iterations to the attractor is estimated. The necessity of the used conditional stability estimate for the existence of iterative processes with the indicated properties is established.

作者简介

M. Kokurin

Mari State University

编辑信件的主要联系方式.
Email: kokurinm@yandex.ru
424001, Yoshkar-Ola, Russia

参考

  1. Треногин В.А. Функциональный анализ. М.: Наука, 1980.
  2. Бакушинский А.Б., Кокурин М.Ю. Алгоритмический анализ нерегулярных операторных уравнений. М.: ЛЕНАНД, 2012.
  3. Лаврентьев М.М., Романов В.Г., Шишатский С.П. Некорректные задачи математической физики и анализа. М.: Наука, 1980.
  4. Кабанихин С.И. Обратные и некорректные задачи. Новосибирск: Сиб. науч. изд-во, 2008.
  5. Романов В.Г. Устойчивость в обратных задачах. М.: Научный мир, 2004.
  6. Isakov V. Inverse Problems for Partial Differential Equations. N.Y.: Springer, 2006.
  7. Кокурин М.Ю. Об условно корректных и обобщенно корректных задачах // Ж. вычисл. матем. и матем. физ. 2013. Т. 53. № 6. С. 857–866.
  8. Kokurin M.Yu. On a characteristic property of conditionally well-posed problems // J. Inv. Ill-Posed Probl. 2015. V. 23. № 3. P. 245–262.
  9. Тихонов А.Н., Леонов А.С., Ягола А.Г. Нелинейные некорректные задачи. М.: Наука, Физматлит, 1995.
  10. Васильев Ф.П. Методы решения экстремальных задач. М.: Наука, 1981.
  11. Красносельский М.А., Вайникко Г.М., Забрейко П.П., Рутицкий Я.Б., Стеценко В.Я. Приближенное решение операторных уравнений. М.: Наука, 1969.
  12. Kokurin M.Yu. On stable finite dimensional approximation of conditionally well-posed inverse problems // I-nv. Probl. 2016. V. 32. № 10. 105007.
  13. Kokurin M.Yu. Stable gradient projection method for nonlinear conditionally well-posed inverse problems // J. Inv. Ill-posed Probl. 2016. V. 24. № 3. P. 323–332.
  14. Поляк Б.Т. Введение в оптимизацию. М.: Наука, 1983.
  15. Кокурин М.Ю. О кластеризации стационарных точек функционалов невязки условно-корректных обратных задач // Сиб. журн. вычисл. матем. 2018. Т. 21. № 4. С. 393–406.
  16. Леонов А.С. О возможности получения линейных оценок точности приближенных решений обратных задач // Изв. вуз. Матем. 2016. № 10. С. 29–35.

补充文件

附件文件
动作
1. JATS XML

版权所有 © М.Ю. Кокурин, 2023