On the Simultaneous Reduction of a Pair of Unitoid Matrices to Diagonal Form
- 作者: Ikramov K.D.1
-
隶属关系:
- Faculty of Computational Mathematics and Cybernetics, Lomonosov Moscow State University
- 期: 卷 63, 编号 2 (2023)
- 页面: 227-229
- 栏目: General numerical methods
- URL: https://rjonco.com/0044-4669/article/view/664888
- DOI: https://doi.org/10.31857/S0044466923020084
- EDN: https://elibrary.ru/BMSMML
- ID: 664888
如何引用文章
详细
Let A and B be Hermitian n*n matrices with A being nonsingular. According to a well-known theorem of matrix analysis, these matrices can be brought to diagonal form by one and the same Hermitian congruence transformation if and only if the matrix C = A-1B has a real spectrum and can be diagonalized by a similarity. An extension of this assertion to the case where two unitoid matrices are simultaneously reduced to diagonal form is stated and proved.
作者简介
Kh. Ikramov
Faculty of Computational Mathematics and Cybernetics, Lomonosov Moscow State University
编辑信件的主要联系方式.
Email: ikramov@cs.msu.su
Moscow, Russia
参考
- Horn R.A., Johnson C.R. Matrix Analysis. Cambridge: Cambridge University Press, 1985.
- Икрамов Х.Д. К опыту спектральной теории для преобразований эрмитовой конгруэнции // Зап. научн. сем. ПОМИ. 2019. Т. 482. С. 114–119.
补充文件
