Stability Indicators of Nonnegative Matrices: Parametric and Sparse Cases

封面

如何引用文章

全文:

开放存取 开放存取
受限制的访问 ##reader.subscriptionAccessGranted##
受限制的访问 订阅存取

详细

Methods for the algorithmic construction of stability indicators of nonnegative matrices is described, and the application of these indicators to problems of modern mathematical biology and epidemiology is discussed. Specific features of such indicators when they are applied to problems about the parametric loss of stability of trivial equilibrium states of discrete dynamical systems are pointed out. Estimates of the efficiency of algorithms based on the proposed methods for the case of systems determined by sparse matrices are given. Examples of using the constructed algorithms for such systems are discussed.

作者简介

V. Razzhevaikin

Federal Research Center “Computer Science and Control,” Russian Academy of Sciences

编辑信件的主要联系方式.
Email: razzh@mail.ru
119333, Moscow, Russia

参考

  1. Leslie P.H. On the use of matrices in certain population mathematics// Biometrica. 1945. V. 33. P. 183–212.
  2. Разжевайкин В.Н. Функционалы отбора в автономных моделях биологических систем с непрерывной возрастной и пространственной структурой// Ж. вычисл. матем. и матем. физ. 2010. Т. 50. № 2. С. 338–346.
  3. Логофет Д.О., Белова И.Н. Неотрицательные матрицы как инструмент моделирования динамики популяций: классические модели и современные обобщения // Фундаментальная и прикл. математика. 2007. Т. 13. № 4. С. 145–164.
  4. Lefcovitch L.P. The study of population growth in organisms grouped by stages. Biometrics. 1965. V. 21. P. 1–18.
  5. Logofet D.O. Convexity in projection matrices: projection to a calibration problem. Ecological modeling. 2008. V. 216. № 2. P. 217–228.
  6. Разжевайкин В.Н. Анализ моделей динамики популяций. М.: МФТИ, 2010. С. 174.
  7. Cushing J.M., Yicang Z. The Net Reproductive Value and Stability in Matrix Population Models. // Nat. Res. Model. 1994. V. 8. № 4. P. 297–333.
  8. Chi-Kwong Li, Hans Schneider. Applications of Perron–Frobenius theory to population dynamics// J. Math. Biol. 2002. V. 44. P. 450–462.
  9. Protasov V.Ju., Logofet D.O. Rank-one corrections of nonnegative matrices, with an applications to matrix population models// SIAM J. Matrix Anal. Appl. 2014. V. 35. № 2. P. 749–764.
  10. Caswell H. Matrix Population Models: Construction, Analysis and Interpretation, 2nd ed. Sinauer Associates: 629 Sunderland, Mass., USA, 2001. V. 8. № 4. Fall 1994.
  11. Logofet D.O., Razzhevaikin V.N.. Potential-Growth Indicators Revisited: Higher Generality and Wider Merit of Indication. MATHEMATICS, 2021. V. 9. № 14. 1649. eISSN: 2227–7390.https://doi.org/10.3390/math9141649
  12. Berman A., Plemmons R.J. Nonnegative matrices in the mathematical sciences. Philadehia: SIAM, 1994. P. 340.
  13. Разжевайкин В.Н., Тыртышников Е.Е. О построении индикаторов устойчивости неотрицательных матриц // Матем. заметки. 2021. Т. 109. № 3. С. 407–418.
  14. Голуб Дж., Ван Лоун Ч. Матричные вычисления. М.: Мир, 1999. С. 548.
  15. Уоткинс Д. Основы матричных вычислений. М., БИНОМ, Лаборатория знаний. 2017. С. 664.
  16. Джорж А., Лю Дж. Численное решение больших разреженных систем уравнений. М.: Мир, 1984. С. 336.

补充文件

附件文件
动作
1. JATS XML

版权所有 © В.Н. Разжевайкин, 2023