The role of phospholipid derivatives of cyclodextrins in the formation of stable lipid nanoparticles for drug delivery
- Authors: Belitskaya E.D.1,2, Oleinokov V.A.1,3, Zalygin A.V.1,4
-
Affiliations:
- Shemyakin–Ovchinnikov Institute of Bioorganic Chemistry of the Russian Academy of Sciences
- Moscow Institute of Physics and Technology (National Research University)
- National Research Nuclear University “MEPhI”
- Lebedev Physical Institute of the Russian Academy of Sciences, Troitsk Branch
- Issue: Vol 51, No 3 (2025)
- Pages: 375-387
- Section: ОБЗОРНАЯ СТАТЬЯ
- URL: https://rjonco.com/0132-3423/article/view/686887
- DOI: https://doi.org/10.31857/S0132342325030013
- EDN: https://elibrary.ru/KPZLST
- ID: 686887
Cite item
Abstract
This review article deals with physical methods for investigating the structural characteristics of inclusion complexes of supramers of phospholipid derivatives of cyclodextrins. Phospholipid derivatives of cyclodextrins are formed by attaching a phospholipid moiety to the cyclodextrin molecule. This modification imparts additional structural features to the cyclodextrin, increasing its solubility and stability in aqueous media. These new compounds can self-assemble in aqueous media into different types of supramolecular nanocomplexes. Biomedical applications are envisaged for nanoencapsulation of drug molecules in hydrophobic interchain volumes and nanocavities of amphiphilic cyclodextrins (serving as drug carriers or pharmaceutical excipients), antitumour phototherapy, gene delivery, and protection of unstable active ingredients by complexation of inclusions in nanostructured media. The focus is on the study of nanoparticle morphology, as efficient delivery systems must fulfil certain requirements. Classical physical methods cannot provide detailed information on the properties of potential structures for biomedical applications. For this purpose, the search for new non-invasive approaches is necessary.
Full Text

About the authors
E. D. Belitskaya
Shemyakin–Ovchinnikov Institute of Bioorganic Chemistry of the Russian Academy of Sciences; Moscow Institute of Physics and Technology (National Research University)
Author for correspondence.
Email: belitskayakatya@yandex.ru
Russian Federation, ul. Miklukho-Maklaya 16/10, Moscow, 117997; Institutskii per. 9, Dolgoprudny, 141701
V. A. Oleinokov
Shemyakin–Ovchinnikov Institute of Bioorganic Chemistry of the Russian Academy of Sciences; National Research Nuclear University “MEPhI”
Email: belitskayakatya@yandex.ru
Russian Federation, ul. Miklukho-Maklaya 16/10, Moscow, 117997; Kashirskoe shosse 31, Moscow, 115409
A. V. Zalygin
Shemyakin–Ovchinnikov Institute of Bioorganic Chemistry of the Russian Academy of Sciences; Lebedev Physical Institute of the Russian Academy of Sciences, Troitsk Branch
Email: belitskayakatya@yandex.ru
Russian Federation, ul. Miklukho-Maklaya 16/10, Moscow, 117997; ul. Fizicheskaya 11, Moscow, Troitsk, 108840
References
- Spencer D.S., Puranik A.S., Peppas N.A. // Curr. Opin. Chem. Eng. 2015. V. 7. P. 84–92. https://doi.org/10.1016/j.coche.2014.12.003
- Hassan S., Prakash G., Ozturk A., Saghazadeh S., Sohail M.F., Seo J., Dokmeci M., Zhang Y.S., Khademhosseini A. // Nano Today. 2017. V. 15. P. 91–106. https://doi.org/10.1016/j.nantod.2017.06.008
- Singh R., Lillard J.W. // Exp. Mol. Pathol. 2009. V. 86. P. 215–223. https://doi.org/10.1016/j.yexmp.2008.12.004
- Hu C.M.J., Fang R.H., Luk B.T., Zhang L. // Nanoscale. 2014. V. 6. P. 65–75. https://doi.org/10.1039/C3NR05444F
- Lakkakula J.R., Krause R.W.M. // Nanomedicine. 2014. V. 9. P. 877–894. https://doi.org/10.2217/nnm.14.41
- Crini G. // Chem. Rev. 2014. V. 114. P. 10940–10975. https://doi.org/10.1021/cr500081p
- Biwer A., Antranikian G., Heinzle E. // Appl. Microbiol. Biotechnol. 2002. V. 59. P. 609–617. https://doi.org/10.1007/s00253-002-1057-x
- Bonnet V., Gervaise C., Djedaïni-Pilard F., Furlan A., Sarazin C. // Drug Discov. Today. 2015. V. 20. P. 1120– 1126. https://doi.org/10.1016/j.drudis.2015.05.008
- Mazzaglia A., Bondì M.L., Scala A., Zito F., Barbieri G., Crea F., Vianelli G., Mineo P., Fiore T., Pellerito C., Pellerito L., Costa M.A. // Biomacromolecules. 2013. V. 14. P. 3820–3829. https://doi.org/10.1021/bm400849n
- Aranda C., Urbiola K., Méndez Ardoy A., García Fernández J.M., Ortiz Mellet C., de Ilarduya C.T. // Eur. J. Pharm. Biopharm. 2013. V. 85. P. 390–397. https://doi.org/10.1016/j.ejpb.2013.06.011
- Roux M., Sternin E., Bonnet V., Fajolles C., Djedaïni-Pilard F. // Langmuir. 2013. V. 29. P. 3677–3687. https://doi.org/10.1021/la304524a
- Niikura K., Matsunaga T., Suzuki T., Kobayashi S., Yamaguchi H., Orba Y., Kawaguchi A., Hasegawa H., Kajino K., Ninomiya T., Ijiro K., Sawa H. // ACS Nano. 2013. V. 7. P. 3926–3938. https://doi.org/10.1021/nn3057005
- Docter D., Westmeier D., Markiewicz M., Stolte S., Knauer S.K., Stauber R.H. // Chem. Soc. Rev. 2015. V. 44. P. 6094–6121. https://doi.org/10.1039/c5cs00217f
- Gervaise C., Bonnet V., Wattraint O., Aubry F., Sarazin C., Jaffrès P.A., Djedaïni-Pilard F. // Biochimie. 2015. V. 94. P. 66–74. https://doi.org/10.1016/j.biochi.2011.09.005
- Zerkoune L., Angelova A., Lesieur S. // Nanomaterials (Basel). 2014. V. 4. P. 741–765. https://doi.org/10.3390/nano4030741
- Auzély-Velty R., Djedaïni-Pilard F., Désert S., Perly B., Zemb T.H. // Langmur. 2000. V. 16. P. 3727–3734. https://doi.org/10.1021/la991361z
- Nozaki T., Maeda Y., Ito K., Kitano H. // Macromolecules. 1995. V. 28. P. 522–524. https://doi.org/10.1021/ma00106a016
- Kauscher U., Stuart M.C.A., Drücker P., Galla H.-J., Ravoo B.J. // Langmuir. 2013. V. 29. P. 7377–7383. https://doi.org/10.1021/la3045434
- Erdoğar N., Esendağlı G., Nielsen T.T., Şen M., Öner L., Bilensoy E. // Int. J. Pharm. 2016. V. 509. P. 375–390. https://doi.org/10.1016/j.ijpharm.2016.05.040
- Shao S., Si J., Tang J., Sui M., Shen Y. // Macromolecules. 2014. V. 47. P. 916–921. https://doi.org/10.1021/ma4025619
- Moutard S., Perly B., Godé P., Demailly G., Djedaïni-Pilard F. // J. Incl. Phenom. 2002. V. 44. P. 317 –322.
- Gèze A., Choisnard L., Putaux J.L., Wouessidjewe D. // Mater. Sci. Eng. 2009. V. 29. P. 458–462. https://doi.org/10.1016/j.msec.2008.08.027
- Pedersen N.R., Kristensen J.B., Bauw G., Ravoo B.J., Darcy R., Larsena K.L., Pedersen L.H. // Tetrahedron Asymmetry. 2005. V. 16. P. 615–622. https://doi.org/10.1016/j.tetasy.2004.12.009
- Yaméogo J.B., Gèze A., Choisnard L., Putaux J.L., Gansané A., Sirima S.B., Semdé R., Wouessidjewe D. // Eur. J. Pharm. Biopharm. 2012. V. 80. P. 508–517. https://doi.org/10.1016/j.ejpb.2011.12.007
- Essa S., Rabanel J.M., Hildgen P. // Int. J. Pharm. 2010. V. 388. P. 263–273. https://doi.org/10.1016/j.ijpharm.2009.12.059
- Bhattacharjee S. // J. Control. Release. 2016. V. 235. P. 337–351. https://doi.org/10.1016/j.jconrel.2016.06.017
- Lesieur S., Charon D., Lesieur P., Ringard-Lefebvre C., Muguet V., Duchêne D., Wouessidjewe D. // Chem. Phys. Lipids. 2000. V. 106. P. 127–144. https://doi.org/10.1016/S0009-3084(00)00149-3
- Kasselouri A., Coleman A.W., Baszkin A. // J. Colloid Interface Sci. 1996. V. 180. P. 384–397. https://doi.org/10.1006/jcis.1996.0317
- LoPresti C., Massignani M., Fernyhough C., Blanazs A., Ryan A.J., Madsen J., Warren N.J., Armes S.P., Lewis A.L., Chirasatitsin S., Engler A.J., Battaglia G. // ACS Nano. 2011. V. 5. P. 1775–1784. https://doi.org/10.1021/nn102455z
- Putaux J.L., Lancelon-Pin C., Legrand F.X., Pastrello M., Choisnard L., Gèze A., Rochas C., Wouessidjewe D. // Langmuir. 2017. V. 33. P. 7917–7928. https://doi.org/10.1021/acs.langmuir.7b01136
- Oliva E., Mathiron D., Rigaud S., Monflier E., Sevin E., Bricout H., Tilloy S., Gosselet F., Fenart L., Bonnet V., Pilard S., Diedaini-Pilard F. // Biomolecules. 2020. V. 10. P. 339. https://doi.org/10.3390/biom10020339
- Feigin L.A., Svergun D.I. // Structure Analysis by Small-Angle X-Ray and Neutron Scattering. New York: Plenum Press, 1987. V. 1. P. 14–15. https://link.springer.com/book/10.1007/978-1-4757-6624-0
- Auzély-Velty R., Perly B., Taché O., Zemb T., Jéhan P., Guenot P., Dalbiez J.-P., Djedaı̈ni-Pilard F. // Carbohydr. Res. 1999. V. 318. P. 82–90. https://doi.org/10.1016/S0008-6215(99)00086-5
- Roling O., Wendeln C., Kauscher U., Seelheim P., Galla H.-J., Ravoo B.J. // Langmuir. 2013. V. 29. P. 10174–10182. https://doi.org/10.1021/la4011218
- Choisnard L., Gèze A., Putaux J.L., Wong Y.S., Wouessidjewe D. // Biomacromolecules. 2006. V. 7. P. 515– 520. https://doi.org/10.1021/bm0507655
- Godinho B.M.D.C., Ogier J.R., Darcy R., O’Driscoll C.M., Cryan J.F. // Mol. Pharm. 2013. V. 10. P. 640–649. https://doi.org/10.1021/mp3003946
- Chen P., Hub J.S. // Biophys. J. 2015. V. 108. P. 2573– 2584. https://doi.org/10.1016/j.bpj.2015.03.062
- Vaskan I.S., Prikhodko A.T., Petoukhov M.V., Shtykova E.V., Bovin N.V., Tuzikov A.B., Oleinikov V.A., Zalygin A.V. // Colloids and Surfaces B: Biointerfaces. 2023. V. 224. P. 113183. https://doi.org/10.1016/j.colsurfb.2023.113183
- Zalygin A., Solovyeva D., Vaskan I., Henry S., Schaefer M., Volynsky P., Tuzikov A., Korchagina E., Ryzhov I., Nizovtsev A., Mochalov K., Efremov R., Shtykova E., Oleinikov V., Bovin N. // ChemistryOpen. 2020. V. 9. P. 641–648. https://doi.org/10.1002/open.201900276
- Zhou X., Liang J.F. // J. Photochem. Photobiol. A Chemistry. 2017. V. 349. P. 124–128. https://doi.org/10.1016/j.jphotochem.2017.09.032
Supplementary files
