Copper(II) Furancarboxylate Complexes with 5-Nitro-1,10-Phenanthroline as Promising Biological Agents

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

The reaction of copper(II) acetate with 2-furancarboxylic (HFur)/5-nitro-2-furancarboxylic (HNfur) acids and 5-nitro-1,10-phenanthroline (Nphen) in methanol resulted in the formation of the binuclear coordination compounds [Cu2(L)4(Nphen)2]·X (L = Fur (I), Nfur (II); X = H2O (I)), which were structurally studied by direct X-ray diffraction (CCDC no. 2244205 (I) and 2244206 (II)). According to X-ray diffraction data, the coordination environment of the central metal ion in I and II is composed of two nitrogen atoms of Nphen and three oxygen atoms of the acid anions, which thus form the {CuN2O3} tetragonal pyramid in which the copper coordination number is five. Intermolecular hydrogen bonds and stacking interactions between the Nphen aromatic rings provide supramolecular stabilization of I and II. A characteristic feature of supramolecular organization of II is the presence of a coordination bond between the Cu2+ cation and oxygen of the Nphen NO2- group of parallel chains. A biological activity assay for complexes I and II concerning the cytotoxic properties against a human ovarian adenocarcinoma cell line (SKOV3) and the mycobacterial strain Mycolicibacterium smegmatis showed an efficient suppression of cell viability. The results of mathematical modeling of the probability of Cu2+ binding to amino acid residues of M. smegmatis proteins suggested the affinity of the Cu(II) ion to a number of amino acids in polypeptide sites. It was shown that metal ion binding in mycobacterial proteins is more characteristic of histidine- and glutamic acid-containing moieties.

About the authors

K. A. Koshenskova

Kurnakov Institute of General and Inorganic Chemistry, Russian Academy of Sciences, Moscow, Russia

Email: irinalu05@rambler.ru
Россия, Москва

D. E. Baravikov

Kurnakov Institute of General and Inorganic Chemistry, Russian Academy of Sciences, Moscow, Russia; Mendeleev University of Chemical Technology of Russia, Moscow, Russia

Email: irinalu05@rambler.ru
Россия, Москва; Россия, Москва

Yu. V. Nelyubina

Nesmeyanov Institute of Organoelement Compounds, Russian Academy of Sciences, Moscow, Russia

Email: irinalu05@rambler.ru
Россия, Москва

P. V. Primakov

Nesmeyanov Institute of Organoelement Compounds, Russian Academy of Sciences, Moscow, Russia

Email: irinalu05@rambler.ru
Россия, Москва

V. O. Shender

Lopukhin Federal Research and Clinical Center of Physical Chemical Medicine, Federal Medical Biological Agency, Moscow, Russia

Email: irinalu05@rambler.ru
Россия, Москва

I. K. Maljants

Lopukhin Federal Research and Clinical Center of Physical Chemical Medicine, Federal Medical Biological Agency, Moscow, Russia

Email: irinalu05@rambler.ru
Россия, Москва

O. B. Bekker

Vavilov Institute of General Genetics, Russian Academy of Sciences, Moscow, Russia

Email: irinalu05@rambler.ru
Россия, Москва

T. M. Aliev

Nesmeyanov Institute of Organoelement Compounds, Russian Academy of Sciences, Moscow, Russia

Email: irinalu05@rambler.ru
Россия, Москва

E. A. Borodin

Amur State Medical Academy, Blagoveshchensk, Russia

Email: irinalu05@rambler.ru
Россия, Благовещенск

D. D. Kotel’nikov

Amur State Medical Academy, Blagoveshchensk, Russia

Email: irinalu05@rambler.ru
Россия, Благовещенск

N. Yu. Leusova

Institute of Geology and Nature Management, Far East Branch, Russian Academy of Sciences, Blagoveshchensk, Russia

Email: irinalu05@rambler.ru
Россия, Благовещенск

S. N. Mantrov

Mendeleev University of Chemical Technology of Russia, Moscow, Russia

Email: irinalu05@rambler.ru
Россия, Москва

M. A. Kiskin

Kurnakov Institute of General and Inorganic Chemistry, Russian Academy of Sciences, Moscow, Russia

Email: irinalu05@rambler.ru
Россия, Москва

I. L. Eremenko

Kurnakov Institute of General and Inorganic Chemistry, Russian Academy of Sciences, Moscow, Russia; Nesmeyanov Institute of Organoelement Compounds, Russian Academy of Sciences, Moscow, Russia

Email: irinalu05@rambler.ru
Россия, Москва; Россия, Москва

I. A. Lutsenko

Kurnakov Institute of General and Inorganic Chemistry, Russian Academy of Sciences, Moscow, Russia

Author for correspondence.
Email: irinalu05@rambler.ru
Россия, Москва

References

  1. Thompson K., Orvig C. // Dalton Trans. 2006. V. 6. P. 761.
  2. Allardyce C., Dyson P. // Dalton Trans. 2016. V. 45. P. 3201.
  3. Storr T., Thompson K.H., Orvig C. // Chem. Soc. Rev. 2006. V. 35. P. 534.
  4. Gregory P. Comprehensive Coordination Chemistry II: From Biology to Nanotechnology, Oxford: Elsevier, 2005. V. 9. 1062 p.
  5. Jalal M., Hammouti B., Touzani R. et al. // Mater. Today: Proceedings. 2020. V. 31. P. 122.
  6. Hamza A., Al-Sibaai A.A., Alwael H. et al. // Results Chem. 2022. V. 4. P. 100422.
  7. Li J., Ren G., Zhang Y. et al. // Polyhedron. 2019. V. 157. P. 163.
  8. Barry N., Sadler P. // Chem. Commun. 2013. V. 49. P. 5106.
  9. Chan W., Wong W. // Polyhedron. 2014. V. 83. P. 150.
  10. Medici S., Peana M., Nurchi V. et al. // Coord. Chem. Rev. 2015. V. 284. P. 329.
  11. Che C.-M., Siu F.-M. // Curr. Opin. Chem. Biol. 2010. V. 14. P. 255.
  12. Dilruba S., Kalayda G.V. // Cancer Chemother. Pharmacol. 2016. V. 77. P. 1103.
  13. Porchia M., Pellei M., Del Bello F. et al. // Molecules. 2020. V. 25. P. 5814.
  14. Ali I., Mahmood L.M.A., Mehdarassin T.H. et al. // Inorg. Chem. Commun. 2020. V. 118. P. 108004.
  15. Zhang Y., Zhou Y., Zhang H. et al. // J. Inorg. Biochem. 2021. V. 224. P. 111580.
  16. Pellei M., Del Bello F., Porchia M. et al. // Coord. Chem. Rev. 2021. V. 445. P. 214088.
  17. Paprocka R., Wiese-Szadkowska M., Janciauskiene S. et al. // Coord. Chem. Rev. 2022. V. 452. P. 214307.
  18. Viganor L., Howe O., McCarron P. et al. // Curr. Top. Med. Chem. 2017. V. 17. P. 1280.
  19. Al-Omair M. A. // Arab. J. Chem. 2019. V. 12. P. 1061.
  20. Ye J., Ma J., Liu C. // Biochem. Pharmacol. 2019. V. 166. P. 93.
  21. Simunkova M., Lauro P., Jomova K. et al. // J. Inorg. Biochem. 2019. V. 194. P. 97.
  22. Gordon A.T., Abosede O., Ntsimango S. et al. // Inorg. Chim. Acta. 2020. V. 510. P. 119744.
  23. Eremina J.A., Smirnova K.S., Klyushova L.S. et al. // J. Mol. Struct. 2021. V. 1245. P. 131024.
  24. Eremina J.A., Ermakova E.A., Smirnova K.S. et al. // Polyhedron. 2021. V. 206. P. 115352.
  25. Eremina J.A., Lider E.V., Kuratieva N.V. et al. // Inorg. Chim. Acta. 2021. V. 516. P. 120169.
  26. Eremina J.A., Lider E.V., Sukhikh T.S. et al. // Inorg. Chim. Acta. 2020. V. 510. P. 119778.
  27. Bravo-Gómez M., Campero-Peredo C., García-Conde D. et al. // Polyhedron. 2015. V. 102. P. 530.
  28. Davila-Manzanilla S., Figueroa-de-Paz Y., Mejia C. et al. // Eur. J. Med. Chem. 2017. V. 129. P. 266.
  29. Correia I., Borovic S., Cavaco I. et al. // J. Inorg. Biochem. 2017. V. 175. P. 284.
  30. Linder M.C., Hazegh-Azam M. // Am. J. Clin. Nutr. 1996. V. 63. P. 797.
  31. Kaim W., Rall J. // Angew. Chem. Int. Ed. 1996. V. 35. P. 43.
  32. Crichton R.R., Pierre J.-L. // Biometals. 2001. V. 14. P. 99.
  33. Луценко И.А., Баравиков Д.Е., Кискин М.А. и др. // Коорд. химия. 2020. Т. 46. № 6. С. 366 (Lutsenko I.A., Baravikov D.E., Kiskin M.A. et al. // Russ. J. Coord. Chem. 2020. V. 46. № 6. P. 411). https://doi.org/10.1134/S1070328420060056
  34. Луценко И.А., Ямбулатов Д.С., Кискин М.А. и др. // Коорд. химия. 2020. Т. 46. № 12. С. 715 (Lutsenko I.A., Yambulatov D.S., Kiskin M.A. et al. // Russ. J. Coord. Chem. 2020. V. 46. № 12. P. 787). https://doi.org/10.1134/S1070328420120040
  35. Lutsenko I.A., Yambulatov D.S., Kiskin M.A. et al. // Chem. Select. 2020. V. 5. P. 11837.
  36. Uvarova M.A., Lutsenko I.A., Kiskin M.A. et al. // Polyhedron. 2021. V. 203. P. 115241.
  37. Луценко И.А., Кискин М.А., Кошенскова К.А. и др. // Изв. АН. Сер. хим. 2021. Т. 3. С. 463 (Lutsenko I.A., Kiskin M.A., Koshenskova K.A. et al. // Russ. Chem. Bull. 2021. V. 70. № 3. P. 463). https://doi.org/10.1007/s11172-021-3109-3
  38. Луценко И.А., Никифорова М.Е., Кошенскова К.А. и др. // Коорд. химия. 2022. Т. 48. С. 83 (Lutsenko I.A., Nikiforova M.E., Koshenskova K.A. et al. // Russ. J. Coord. Chem. 2021. V. 47. № 12. P. 879). https://doi.org/10.31857/S0132344X22020049
  39. Lutsenko I.A., Baravikov D.E., Koshenskova K.A. et al. // RSC Advances. 2022. V. 12. P. 5173.
  40. Кошенскова К.А., Луценко И.А., Нелюбина Ю.В. и др. // Журн. неорган. химии. 2022. Т. 67. С. 1398 (Koshenskova K.A., Lutsenko I.A., Nelyubina Yu.V. et al. // Russ. J. Inorg. Chem. 2022. V. 67. P. 1545). https://doi.org/10.31857/S0044457X22700106
  41. Луценко И.А., Лосева О.В., Иванов А.В. и др. // Коорд. химия. 2022. Т. 48. С. 739 (Lutsenko I.A., Loseva O.V., Ivanov A.V. et al. Russ. J. Coord. Chem. 2022. V. 48. P. 808). https://doi.org/10.1134/S1070328422700178
  42. Naletova I., Satriano K., Cursi A. et al. // Oncotarget. 2018. V. 9. P. 36289.
  43. Pivetta T., Trudu F., Valletta E. et al. // J. Inorg. Biochem. 2014. V. 141. P. 103.
  44. Sheldrick G.M. // Acta Crystallogr. A. 2015. V. 71. P. 3.
  45. Dolomanov O.V., Bourhis L.J., Gildea R.J. et al. // J. A-ppl. Cryst. 2009. V. 42. P. 339.
  46. Lu C.H., Chen C.C., Yu C.S. // Bioinformatics. 2022. V. 38. № 18. P. 4428. https://doi.org/10.1093/bioinformatics/btac534
  47. Toigo J., Farias G., Salla C.A.M. et al. // Eur. J. Med. Chem. 2021. V. 31. P. 3177.
  48. Liu Y.-T., Yin X., Lai X.-Y. et al. // Dyes Pigm. 2020. V. 176. P. 108244.
  49. Ramon-García S., Ng C., Anderson H. et al. // Antimikrob. Agen. Chemother. 2011. V. 8. P. 3861.
  50. Bekker O.B., Sokolov D.N., Luzina O.A. et al. // Med. Chem. Res. 2015. V. 24. P. 2926.

Supplementary files

Supplementary Files
Action
1. JATS XML
2.

Download (58KB)
3.

Download (499KB)
4.

Download (609KB)
5.

Download (741KB)
6.

Download (509KB)
7.

Download (137KB)
8.

Download (656KB)
9.

Download (122KB)
10.

Download (124KB)

Copyright (c) 2023 К.А. Кошенскова, Д.Е. Баравиков, Ю.В. Нелюбина, П.В. Примаков, В.О. Шендер, И.К. Мальянц, О.Б. Беккер, Т.М. Алиев, Е.А. Бородин, Д.Д. Котельников, Н.Ю. Леусова, С.Н. Мантров, М.А. Кискин, И.Л. Еременко, И.А. Луценко