A New Biocompatible Metal-Organic Framework Prepared by Green Chemistry Methods

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

A new biocompatible metal-organic framework [Mg(Mal)(H2O)](H2O) (H2Mal = malic acid) (I) was synthesized under solvothermal conditions, isolated in a pure state, and characterized by elemental analysis and X-ray diffraction. Compound I, which is the second example of a magnesium metal-organic framework based on malic acid, was prepared under drastic conditions of solvothermal synthesis. Cysteine or products of its decomposition were found to have a template effect on the formation of malic acid-based metal-organic frameworks under the chosen drastic conditions.

About the authors

E. A. Maiorova

Moscow Institute of Physics and Technology (National Research University), Moscow, Russia

Email: novikov84@ineos.ac.ru
Россия, Москва

A. M. Pak

Nesmeyanov Institute of Organoelement Compounds, Russian Academy of Sciences, Moscow, Russia;
Moscow Institute of Physics and Technology (National Research University), Moscow, Russia

Email: novikov84@ineos.ac.ru
Россия, Москва; Россия, Москва

Yu. V. Nelyubina

Nesmeyanov Institute of Organoelement Compounds, Russian Academy of Sciences, Moscow, Russia; Bauman Moscow State Technical University, Moscow, Russia

Email: novikov84@ineos.ac.ru
Россия, Москва; Россия, Москва

V. V. Novikov

Nesmeyanov Institute of Organoelement Compounds, Russian Academy of Sciences, Moscow, Russia;
Moscow Institute of Physics and Technology (National Research University), Moscow, Russia;
Bauman Moscow State Technical University, Moscow, Russia

Author for correspondence.
Email: novikov84@ineos.ac.ru
Россия, Москва; Россия, Москва; Россия, Москва

References

  1. Yaghi O.M., Li H. // J. Am. Chem. Soc. 1995. V. 117. № 41. P. 10401.
  2. Yaghi O.M., O’Keeffe M., Ockwig N.W. et al. // Nature. 2003. V. 423. № 6941. P. 705.
  3. Katayama Y., Kalaj M., Barcus K.S. et al. // J. Am. Chem. Soc. 2019. V. 141. № 51. P. 20000.
  4. Zhou H.-C., Long J.R., Yaghi O.M. // Chem. Rev. 2012. V. 112. № 2. P. 673.
  5. Munakata M., Kuroda-Sowa T., Maekawa M. et al. // Inorg. Chem. 1995. V. 34. № 10. P. 2705.
  6. Gardner G.B., Venkataraman D., Moore J.S. et al. // Nature. 1995. V. 374. № 6525. P. 792.
  7. Hoskins B.F., Robson R. // J. Am. Chem. Soc. 1990. V. 112. № 4. P. 1546.
  8. Furukawa H., Ko N., Go Y.B. et al. // Science. 2010. V. 329. № 5990. P. 424.
  9. Wang Z., Cohen S.M. // Chem. Soc. Rev. 2009. V. 38. № 5. P. 1315.
  10. Kim C.R., Uemura T., Kitagawa S. // Chem. Soc. Rev. 2016. V. 45. № 14. P. 3828.
  11. Chen L., Zhang X., Cheng X. et al. // Nanoscale Adv. RSC. 2020. V. 2. № 7. P. 2628.
  12. Wang Q., Astruc D. // Chem. Rev. 2020. V. 120. № 2. P. 1438.
  13. Xing X.-S., Fu Z.-H., Zhang N.-N. et al. // Chem. Commun. 2019. V. 55. № 9. P. 1241.
  14. Mirkovic I., Lei L., Ljubic D. et al. // ACS Omega. 2019. V. 4. № 1. P. 169.
  15. Li H., Li L., Lin R.-B. et al. // EnergyChem. 2019. V. 1. № 1. P. 100006.
  16. Li H., Wang K., Sun Y. et al. // Mater. Today. 2018. V. 21. № 2. P. 108.
  17. Baumann A.E., Burns D.A., Liu B. et al. // Commun. Chem. 2019. V. 2. № 1. P. 1.
  18. Sun Y., Zheng L., Yang Y. et al. // Nano-Micro Lett. 2020. V. 12. № 1. P. 103.
  19. Wei Y.-S., Zhang M., Zou R. et al. // Chem. Rev. 2020. V. 120. № 21. P. 12089.
  20. Kreno L.E., Leong K., Farha O.K. et al. // Chem. Rev. 2012. V. 112. № 2. P. 1105.
  21. Jun B.-M., Al-Hamadani Y.A.J., Son A. et al. // Sep. Purif. Technol. 2020. V. 247. P. 116947.
  22. Qian Q., Asinger P.A., Lee M.J. et al. // Chem. Rev. 2020. V. 120. № 16. P. 8161.
  23. Qiu S., Xue M., Zhu G. // Chem. Soc. Rev. 2014. V. 43. № 16. P. 6116.
  24. Burtch N.C., Jasuja H., Walton K.S. // Chem. Rev. 2014. V. 114. № 20. P. 10575.
  25. Ding M., Jiang H.-L. // CCS Chem. V. 3. № 8. P. 2740.
  26. McKinlay A.C., Morris R.E., Horcajada P. et al. // Angew. Chem. Int. Ed. 2010. V. 49. № 36. P. 6260.
  27. Anderson S.L., Stylianou K.C. // Coord. Chem. Rev. 2017. V. 349. P. 102.
  28. Liu B., Jiang M., Zhu D. et al. // Chem. Eng. J. 2022. V. 428. P. 131118.
  29. Zhang M., Lu W., Li J.-R. et al. // Inorg. Chem. Front. 2014. V. 1. № 2. P. 159.
  30. Smaldone R.A., Forgan R.S., Furukawa H. et al. // Angew. Chem. Int. Ed. 2010. V. 49. № 46. P. 8630.
  31. Nurani D.A., Butar B.C.B., Krisnandi Y.K. // IOP Conf. Ser. Mater. Sci. Eng. 2020. V. 902. № 1. P. 012055.
  32. Horcajada P., Gref R., Baati T. et al. // Chem. Rev. 2012. V. 112. № 2. P. 1232.
  33. Ahmadi M., Ayyoubzadeh S.M., Ghorbani-Bidkorbeh F. et al. // Heliyon. 2021. V. 7. № 4. P. e06914.
  34. Al Sharabati M., Sabouni R., Husseini G.A. // Nanomaterials. 2022. V. 12. № 2. P. 277.
  35. Lu W., Wei Z., Gu Z.-Y. et al. // Chem. Soc. Rev. 2014. V. 43. № 16. P. 5561.
  36. Davison E.K., Sperry J. // J. Nat. Prod. 2017. V. 80. № 11. P. 3060.
  37. Burneo I., Stylianou K.C., Imaz I. et al. // Chem. Commun. 2014. V. 50. № 89. P. 13829.
  38. Stylianou K.C., Gómez L., Imaz I. et al. // Chem. Eur. J. 2015. V. 21. № 28. P. 9964.
  39. Dybtsev D.N., Nuzhdin A.L., Chun H. et al. // Angew. Chem. 2006. V. 118. № 6. P. 930.
  40. Stock N., Biswas S. // Chem. Rev. 2012. V. 112. № 2. P. 933.
  41. Zavyalova A.G., Kladko D.V., Chernyshov I.Y. et al. // J. Mater. Chem. A. 2021. V. 9. № 45. P. 25258.
  42. Bowden N.A., Sanders J.P.M., Bruins M.E. // J. Chem. Eng. Data. 2018. V. 63. № 3. P. 488.
  43. Kim T.H., Kim S.G. // Saf. Health Work. 2011. V. 2. № 2. P. 97.
  44. Sheldrick G.M. // Acta Crystallogr. A. 2015. V. 71. Pt. 1. P. 3.
  45. Dolomanov O.V., Bourhis L.J., Gildea R.J. et al. // J. A-ppl. Crystallogr. 2009. V. 42. № 2. P. 339.
  46. Alvarez S. // Chem. Rev. 2015. V. 11. № 24. P. 13447.
  47. Zhang J., Chen S., Zingiryan A. et al. // J. Am. Chem. Soc. 2008. V. 130. № 51. P. 17246.

Supplementary files

Supplementary Files
Action
1. JATS XML
2.

Download (252KB)
3.

Download (362KB)
4.

Download (798KB)

Copyright (c) 2023 Е.А. Майорова, А.М. Пак, Ю.В. Нелюбина, В.В. Новиков