Cu(II), Ni(II), Co(II), Zn(II), and Pd(II) Complexes with (4Z)-4-[(2-Furylmethylamino)methylene]-5-methyl-2-phenylpyrazol-3-one: Synthesis, Structures, and Properties
- Authors: Vlasenko V.G.1, Burlov A.S.2, Milutka M.S.2, Koshchienko Y.V.2, Uraev A.I.2, Lazarenko V.A.3, Makarova N.I.2, Metelitsa A.V.2, Zubenko A.A.4, Garnovskii D.A.5
-
Affiliations:
- Institute of Physics, Southern Federal University, Rostov-on-Don, Russia
- Institute of Physical and Organic Chemistry, Southern Federal University, Rostov-on-Don, Russia
- National Research Center Kurchatov Institute, Moscow, Russia
- North Caucasian Zonal Scientific Research Veterinary Institute, Novocherkassk, Russia
- Southern Scientific Center, Russian Academy of Sciences, Rostov-on-Don, Russia
- Issue: Vol 49, No 3 (2023)
- Pages: 163-173
- Section: Articles
- URL: https://rjonco.com/0132-344X/article/view/667525
- DOI: https://doi.org/10.31857/S0132344X22600217
- EDN: https://elibrary.ru/BNPJEG
- ID: 667525
Cite item
Abstract
(4Z)-4-[(2-Furylmethylamino)methylene]-5-methyl-2-phenylpyrazol-3-one (HL) and its Cu(II), Ni(II), Co(II), Zn(II), and Pd(II) complexes with the ML2 composition are synthesized. The structures of the complexes are studied by elemental C,H,N analysis, IR spectroscopy, magnetochemical measurements, and quantum chemistry. The crystal structures of the copper(II) and cobalt(II) complexes are determined by X-ray diffraction (XRD) (CIF files CCDC nos. 2177619 and 2177622, respectively). Two deprotonated ligands are coordinated to the metal ions via the chelate mode by the nitrogen atom of the imino group and the oxygen atom of the hydroxy group of the ligand. The geometry of the copper(II) ion environment corresponds to a distorted planar square, whereas the cobalt(II) ion exists in a distorted tetrahedral environment. In the series of the compounds studied, fluorescence with a maximum at 431 nm and a quantum yield of 0.29 is observed for the Zn(II) complex in a solution of CH2Cl2. The synthesized enamine and metal complexes are tested for antibacterial, protistocidal, and fungistatic activities. All compounds are shown to have no fungistatic and antibacterial activities, and only a weak protistocidal activity is found for the copper and zinc complexes.
Keywords
About the authors
V. G. Vlasenko
Institute of Physics, Southern Federal University, Rostov-on-Don, Russia
Email: v_vlasenko@rambler.ru
Россия, Ростов-на-Дону
A. S. Burlov
Institute of Physical and Organic Chemistry, Southern Federal University, Rostov-on-Don, Russia
Email: v_vlasenko@rambler.ru
Россия, Ростов-на-Дону
M. S. Milutka
Institute of Physical and Organic Chemistry, Southern Federal University, Rostov-on-Don, Russia
Email: v_vlasenko@rambler.ru
Россия, Ростов-на-Дону
Yu. V. Koshchienko
Institute of Physical and Organic Chemistry, Southern Federal University, Rostov-on-Don, Russia
Email: v_vlasenko@rambler.ru
Россия, Ростов-на-Дону
A. I. Uraev
Institute of Physical and Organic Chemistry, Southern Federal University, Rostov-on-Don, Russia
Email: v_vlasenko@rambler.ru
Россия, Ростов-на-Дону
V. A. Lazarenko
National Research Center Kurchatov Institute, Moscow, Russia
Email: v_vlasenko@rambler.ru
Россия, Москва
N. I. Makarova
Institute of Physical and Organic Chemistry, Southern Federal University, Rostov-on-Don, Russia
Email: v_vlasenko@rambler.ru
Россия, Ростов-на-Дону
A. V. Metelitsa
Institute of Physical and Organic Chemistry, Southern Federal University, Rostov-on-Don, Russia
Email: v_vlasenko@rambler.ru
Россия, Ростов-на-Дону
A. A. Zubenko
North Caucasian Zonal Scientific Research Veterinary Institute, Novocherkassk, Russia
Email: v_vlasenko@rambler.ru
Россия, Новочеркасск
D. A. Garnovskii
Southern Scientific Center, Russian Academy of Sciences, Rostov-on-Don, Russia
Author for correspondence.
Email: v_vlasenko@rambler.ru
Россия, Ростов-на-Дону
References
- Uraev A.I., Nefedov S.E., Lyssenko K.A. et al. // Polyhedron. 2020. V. 188. P. 114623. https://doi.org/10.1016/j.poly.2020.114623
- Garnovskii D.A., Vlasenko V.G., Lyssenko K.A. et al. // Polyhedron. 2020. V. 190. P. 114763. https://doi.org/10.1016/j.poly.2020.114763
- Гарновский Д.А., Власенко В.Г., Александров Г.Г. и др. // Коорд. химия. 2018. Т. 44. № 5. С. 295 (Garnovskii D.A., Vlasenko V.G., Aleksandrov G.G. et al. // Russ. J. Coord. Chem. 2018. V. 44. P. 596). https://doi.org/10.1134/S0132344X18050031
- Uraev A.I., Lyssenko K.A., Vlasenko V.G. et al // Polyhedron. 2018. V. 146. P. 1. https://doi.org/10.1016/j.poly.2018.02.018
- Ураев А.И., Коробов М.С., Попов Л.Д. и др. // Журн. общ. химии. 2017. Т. 87. № 2. С. 277 (Uraev A.I., Korobov M.S., Popov L.D. et al // Russ. J. Gen. Chem. 2017. V. 87. P. 252). https://doi.org/10.1134/S1070363217020165
- Гарновский Д.А., Александров Г.Г., Макарова Н.И. и др. // Журн. неорган. химии. 2017. Т. 62. № 8. С. 1078 (Garnovskii D.A., Aleksandrov G.G., Makarova N.I. et al. // Russ. J. Inorg. Chem. 2017. V. 62. P. 1077). https://doi.org/10.1134/S0036023617080071
- Гарновский Д.А., Анцышкина А.С., Макарова Н.И. и др. // Журн. неорган. химии. 2015. Т. 60. № 12. С. 1670 (Garnovskii D.A., Antsyshkina A.S., Makarova N.I. et al. // Russ. J. Inorg. Chem. 2015. V. 60. № 12. P. 1528). https://doi.org/10.1134/S0036023615120116
- Бурлов А.С., Кощиенко Ю.В., Власенко В.Г. и др. // Журн. общ. химии. 2016. Т. 86. № 10. С. 1732 (Burlov A.S., Koshchienko Y.V., Vlasenko V.G. et al. // Russ. J. Gen. Chem. 2016. V. 86. P. 2379). https://doi.org/10.1134/S1070363216100224
- Бурлов А.С., Власенко В.Г., Лифинцева Т.В. и др. // Коорд. химия. 2020. Т. 46. № 7. С. 429 (Burlov A.S., Vlasenko V.G., Lifintseva T.V. et al. // Russ. J. Coord. Chem. 2020. V. 46. P. 485). https://doi.org/10.1134/S1070328420070015
- Vlasenko V.G., Garnovskii D.A., Aleksandrov G.G. et al. // Polyhedron. 2019. V. 157. P. 6. https://doi.org/10.1016/j.poly.2018.09.065
- Ying-Xin Zou, Xu Feng, Zhi-Yong Chu et al. // Regul. Toxic. Pharm. 2019. V. 103. P. 34. https://doi.org/10.1016/j.yrtph.2019.01.018
- Micieli G., Manzoni G.C., Granella F. et al. // Drug-Induced Headache. Advances in Applied Neurological Sciences / Eds Diene H.C., Wilkinson M. Berlin, Heidelberg: Springer, 1988. V. 5. P. 20. https://doi.org/10.1007/978-3-642-73327-7_5
- Ribeiro N., Roy S., Butenko N. et al. // J. Inorg. Biochem. 2017. V. 174. P. 63. https://doi.org/10.1016/j.jinorgbio.2017.05.011
- Parvarinezhad S., Salehi M., Malekshah R.E. et al. // Appl. Organomet. Chem. 2022. V. 36. Iss. 3. P. e6563. https://doi.org/10.1002/aoc.6563
- Venkateswarlu K., Ganji N., Daravath S. et al. // Polyhedron. 2019. V. 171. P. 86. https://doi.org/10.1016/j.poly.2019.06.048
- Poormohammadi E.B., Behzad M., Abbasi Z. et al. // J. Mol. Struct. 2020. V. 1205. P. 127603, https://doi.org/10.1016/j.molstruc.2019.127603
- Jayarajan R., Vasuki G., Rao P.S. // Org. Chem. Int. 2010. V. 2010. Art. 648589. https://doi.org/10.1155/2010/648589
- Burlov A.S., Vlasenko V.G., Dmitriev A.V. et al. // Synth. Metals. 2015. V. 203. P. 156. https://doi.org/10.1016/j.synthmet.2015.02.028
- Burlov A.S., Koshchienko Y.V., Makarova N.I. et al. // Synth. Metals. 2016. V. 220. P. 543. https://doi.org/10.1016/j.synthmet.2016.06.025
- Минкин В.И., Цивадзе А.Ю., Бурлов А.С. и др. Патент РФ № 2470025 // Б.И. № 35. 20.12.2012.
- Gusev A.N., Kiskin M.A., Braga E.V. et al. // ACS Appl. Electron. Mater. 2021. V. 3. № 8. P. 3436. https://doi.org/10.1021/acsaelm.1c00402
- Гусев А.Н., Брага Е.В., Крюкова М.А. и др. // Коорд. химия. 2020. Т. 46. № 4. С. 232 (Gusev A.N., Braga E.V., Kryukova M.A. et al. // Russ. J. Coord. Chem. 2020. V. 46. P. 251). https://doi.org/10.1134/S107032842004003X
- Gusev A.N., Kiskin M.A., Braga E.V. et al. // J. Phys. Chem. C. 2019. V. 123. № 18. P. 11850. https://doi.org/10.1021/acs.jpcc.9b02171
- Barkanov A., Zakharova A., Vlasova T. et al. // J. Mater. Sci. 2022. V. 57. P. 8393. https://doi.org/10.1007/s10853-021-06721-4
- Marchetti F., Pettinari C., Di Nicola C. et al. // Coord. Chem. Rev. 2019. V. 401. P. 213069. https://doi.org/10.1016/j.ccr.2019.213069
- Marchetti F., Pettinari C., Pettinari R. // Coord. Chem. Rev. 2005. V. 249. P. 2909. https://doi.org/10.1016/j.ccr.2005.03.013
- Marchetti F., Pettinari C., Pettinari R. // Coord. Chem. Rev. 2015. V. 303. P. 1. https://doi.org/10.1016/j.ccr.2015.05.003
- Ураев А.И., Ниворожкин А.В., Бондаренко Г.И. и др. // Изв. АН. Сер. хим. 2000. № 11. С. 1892 (Uraev A., Nivorozhkin A., Bondarenko G. et al. // Russ. Chem. Bull. Int. Ed. 2000. V. 49. P. 1863). https://doi.org/10.1007/BF02494925
- Ураев А.И., Коршунов О.Ю., Ниворожкин А.Л. и др. // Журн. неорган. химии. 2009. Т. 54. № 4. С. 575 (Uraev A.I., Korshunov O.Y., Nivorozhkin A.L. et al. // Russ. J. Inorg. Chem. 2009. V. 54. № 4. P. 521). https://doi.org/10.1134/S0036023609040068
- Nivorozhkin A.L., Uraev A.I., Bondarenko G.I. et al. // Chem. Commun. 1997. № 18. P. 1711. https://doi.org/10.1039/a704879c
- Ураев А.И., Ниворожкин А.Л., Курбатов В.П. и др. // Изв. АН. Сер. хим. 2003. № 11. С. 2386 (Uraev A.I., Nivorozhkin A.L., Divaeva L.N. et al. // Russ. Chem. Bull. 2003. V. 52. № 11. P. 2523).
- Порай-Кошиц Б.А., Квитко И.Я. // Журн. общ. химии. 1962. Т. 32. № 12. С. 4050 (Porai-Koshits B.A., Kvitko I.Ya. // Zh. Obshch. Khim. 1962. V. 32. P. 4050).
- Квитко И.Я., Порай-Кошиц Б.А. // Журн. орган. химии. 1964. Т. 34. № 9. С. 3005 (Kvitko I.Ya., Porai-Koshits B.A. // Zh. Org. Khim. 1964. V. 34. P. 3005).
- Красовицкий Б.М., Болотин Б.М. Органические люминофоры. М.: Химия, 1984. С. 336.
- Perdew J.P., Burke K., Ernzerhof M. // Phys. Rev. Lett. 1997. V. 78. P. 1396. https://doi.org/10.1103/physrevlett.78.1396
- Perdew J.P., Ernzerhof M., Burke K. // J. Chem. Phys. 1996. V. 105. P. 9982. https://doi.org/10.1063/1.472933
- Woon D.E., Dunning T.H., Jr. // J. Chem. Phys. 1993. V. 98. P. 1358. https://doi.org/10.1063/1.464303
- Frisch M.J., Trucks G.W., Schlegel H.B. et al. Gaussian 03. Revision A.1. Pittsburgh (PA, USA): Gaussian, Inc., 2003.
- Tomasi J., Mennucci B., Cammi R. // Chem. Rev. 2005. V. 105. P. 2999. https://doi.org/10.1021/cr9904009
- Lazarenko V.A., Dorovatovskii P.V., Zubavichus Y.V. et al. // Crystals. 2017. V. 7. № 11. P. 325. https://doi.org/10.3390/cryst7110325
- Svetogorov R.D., Dorovatovskii P.V., Lazarenko V.A. // Cryst. Res. Tech. 2020. V. 55. № 5. P. 1900184. https://doi.org/10.1002/crat.201900184
- Kabsch W. // Acta Crystallogr. D. 2010. V. 66. № 2. P. 125. https://doi.org/10.1107/S0907444909047337
- Sheldrick G.M. // Acta Crystallogr. C. 2015. V. 71. P. 3. https://doi.org/10.1107/S2053229614024218
- Burlov A.S., Vlasenko V.G., Koshchienko Yu.V et al. // Polyhedron. 2018. V. 154. P. 65. https://doi.org/10.1016/j.poly.2018.07.034
- Burlov A.S., Vlasenko V.G., Koshchienko Yu.V. et al. // Polyhedron. 2018. V. 144. P. 249. https://doi.org/10.1016/j.poly.2018.01.020
- Фетисов Л.Н., Зубенко А.А., Бодряков А.Н., Бодрякова М.А. // Междунар. паразитологический симп. “Современные проблемы общей и частной паразитологии”. 2012. С. 70.
- Minkin V.I., Garnovskii A.D., Elguero J. et al. // Adv. Heterocycl. Chem. 2000. V. 76. P. 157.
- Chatziefthimiou S.D., Lazarou Y.G., Hadjoudis E. et al. // J. Phys. Chem. B 2006. V. 110. P. 23701. https://doi.org/10.1021/jp064110p
- Feng Bao, Juan Feng, Seik Weng Ng // Acta Crystallogr. E. 2005. V. 61. P. m2393. https://doi.org/10.1107/S1600536805033805
- Rong-Ming Ma, Shao-Fa Sun, Seik Weng Ng // Acta Crystallogr. E. 2006. V. 62. P. m2711. https://doi.org/10.1107/S1600536806038049
Supplementary files
