Cu(II), Ni(II), Co(II), Zn(II), and Pd(II) Complexes with (4Z)-4-[(2-Furylmethylamino)methylene]-5-methyl-2-phenylpyrazol-3-one: Synthesis, Structures, and Properties

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

(4Z)-4-[(2-Furylmethylamino)methylene]-5-methyl-2-phenylpyrazol-3-one (HL) and its Cu(II), Ni(II), Co(II), Zn(II), and Pd(II) complexes with the ML2 composition are synthesized. The structures of the complexes are studied by elemental C,H,N analysis, IR spectroscopy, magnetochemical measurements, and quantum chemistry. The crystal structures of the copper(II) and cobalt(II) complexes are determined by X-ray diffraction (XRD) (CIF files CCDC nos. 2177619 and 2177622, respectively). Two deprotonated ligands are coordinated to the metal ions via the chelate mode by the nitrogen atom of the imino group and the oxygen atom of the hydroxy group of the ligand. The geometry of the copper(II) ion environment corresponds to a distorted planar square, whereas the cobalt(II) ion exists in a distorted tetrahedral environment. In the series of the compounds studied, fluorescence with a maximum at 431 nm and a quantum yield of 0.29 is observed for the Zn(II) complex in a solution of CH2Cl2. The synthesized enamine and metal complexes are tested for antibacterial, protistocidal, and fungistatic activities. All compounds are shown to have no fungistatic and antibacterial activities, and only a weak protistocidal activity is found for the copper and zinc complexes.

About the authors

V. G. Vlasenko

Institute of Physics, Southern Federal University, Rostov-on-Don, Russia

Email: v_vlasenko@rambler.ru
Россия, Ростов-на-Дону

A. S. Burlov

Institute of Physical and Organic Chemistry, Southern Federal University, Rostov-on-Don, Russia

Email: v_vlasenko@rambler.ru
Россия, Ростов-на-Дону

M. S. Milutka

Institute of Physical and Organic Chemistry, Southern Federal University, Rostov-on-Don, Russia

Email: v_vlasenko@rambler.ru
Россия, Ростов-на-Дону

Yu. V. Koshchienko

Institute of Physical and Organic Chemistry, Southern Federal University, Rostov-on-Don, Russia

Email: v_vlasenko@rambler.ru
Россия, Ростов-на-Дону

A. I. Uraev

Institute of Physical and Organic Chemistry, Southern Federal University, Rostov-on-Don, Russia

Email: v_vlasenko@rambler.ru
Россия, Ростов-на-Дону

V. A. Lazarenko

National Research Center Kurchatov Institute, Moscow, Russia

Email: v_vlasenko@rambler.ru
Россия, Москва

N. I. Makarova

Institute of Physical and Organic Chemistry, Southern Federal University, Rostov-on-Don, Russia

Email: v_vlasenko@rambler.ru
Россия, Ростов-на-Дону

A. V. Metelitsa

Institute of Physical and Organic Chemistry, Southern Federal University, Rostov-on-Don, Russia

Email: v_vlasenko@rambler.ru
Россия, Ростов-на-Дону

A. A. Zubenko

North Caucasian Zonal Scientific Research Veterinary Institute, Novocherkassk, Russia

Email: v_vlasenko@rambler.ru
Россия, Новочеркасск

D. A. Garnovskii

Southern Scientific Center, Russian Academy of Sciences, Rostov-on-Don, Russia

Author for correspondence.
Email: v_vlasenko@rambler.ru
Россия, Ростов-на-Дону

References

  1. Uraev A.I., Nefedov S.E., Lyssenko K.A. et al. // Polyhedron. 2020. V. 188. P. 114623. https://doi.org/10.1016/j.poly.2020.114623
  2. Garnovskii D.A., Vlasenko V.G., Lyssenko K.A. et al. // Polyhedron. 2020. V. 190. P. 114763. https://doi.org/10.1016/j.poly.2020.114763
  3. Гарновский Д.А., Власенко В.Г., Александров Г.Г. и др. // Коорд. химия. 2018. Т. 44. № 5. С. 295 (Garnovskii D.A., Vlasenko V.G., Aleksandrov G.G. et al. // Russ. J. Coord. Chem. 2018. V. 44. P. 596). https://doi.org/10.1134/S0132344X18050031
  4. Uraev A.I., Lyssenko K.A., Vlasenko V.G. et al // Polyhedron. 2018. V. 146. P. 1. https://doi.org/10.1016/j.poly.2018.02.018
  5. Ураев А.И., Коробов М.С., Попов Л.Д. и др. // Журн. общ. химии. 2017. Т. 87. № 2. С. 277 (Uraev A.I., Korobov M.S., Popov L.D. et al // Russ. J. Gen. Chem. 2017. V. 87. P. 252). https://doi.org/10.1134/S1070363217020165
  6. Гарновский Д.А., Александров Г.Г., Макарова Н.И. и др. // Журн. неорган. химии. 2017. Т. 62. № 8. С. 1078 (Garnovskii D.A., Aleksandrov G.G., Makarova N.I. et al. // Russ. J. Inorg. Chem. 2017. V. 62. P. 1077). https://doi.org/10.1134/S0036023617080071
  7. Гарновский Д.А., Анцышкина А.С., Макарова Н.И. и др. // Журн. неорган. химии. 2015. Т. 60. № 12. С. 1670 (Garnovskii D.A., Antsyshkina A.S., Makarova N.I. et al. // Russ. J. Inorg. Chem. 2015. V. 60. № 12. P. 1528). https://doi.org/10.1134/S0036023615120116
  8. Бурлов А.С., Кощиенко Ю.В., Власенко В.Г. и др. // Журн. общ. химии. 2016. Т. 86. № 10. С. 1732 (Burlov A.S., Koshchienko Y.V., Vlasenko V.G. et al. // Russ. J. Gen. Chem. 2016. V. 86. P. 2379). https://doi.org/10.1134/S1070363216100224
  9. Бурлов А.С., Власенко В.Г., Лифинцева Т.В. и др. // Коорд. химия. 2020. Т. 46. № 7. С. 429 (Burlov A.S., Vlasenko V.G., Lifintseva T.V. et al. // Russ. J. Coord. Chem. 2020. V. 46. P. 485). https://doi.org/10.1134/S1070328420070015
  10. Vlasenko V.G., Garnovskii D.A., Aleksandrov G.G. et al. // Polyhedron. 2019. V. 157. P. 6. https://doi.org/10.1016/j.poly.2018.09.065
  11. Ying-Xin Zou, Xu Feng, Zhi-Yong Chu et al. // Regul. Toxic. Pharm. 2019. V. 103. P. 34. https://doi.org/10.1016/j.yrtph.2019.01.018
  12. Micieli G., Manzoni G.C., Granella F. et al. // Drug-Induced Headache. Advances in Applied Neurological Sciences / Eds Diene H.C., Wilkinson M. Berlin, Heidelberg: Springer, 1988. V. 5. P. 20. https://doi.org/10.1007/978-3-642-73327-7_5
  13. Ribeiro N., Roy S., Butenko N. et al. // J. Inorg. Biochem. 2017. V. 174. P. 63. https://doi.org/10.1016/j.jinorgbio.2017.05.011
  14. Parvarinezhad S., Salehi M., Malekshah R.E. et al. // Appl. Organomet. Chem. 2022. V. 36. Iss. 3. P. e6563. https://doi.org/10.1002/aoc.6563
  15. Venkateswarlu K., Ganji N., Daravath S. et al. // Polyhedron. 2019. V. 171. P. 86. https://doi.org/10.1016/j.poly.2019.06.048
  16. Poormohammadi E.B., Behzad M., Abbasi Z. et al. // J. Mol. Struct. 2020. V. 1205. P. 127603, https://doi.org/10.1016/j.molstruc.2019.127603
  17. Jayarajan R., Vasuki G., Rao P.S. // Org. Chem. Int. 2010. V. 2010. Art. 648589. https://doi.org/10.1155/2010/648589
  18. Burlov A.S., Vlasenko V.G., Dmitriev A.V. et al. // Synth. Metals. 2015. V. 203. P. 156. https://doi.org/10.1016/j.synthmet.2015.02.028
  19. Burlov A.S., Koshchienko Y.V., Makarova N.I. et al. // Synth. Metals. 2016. V. 220. P. 543. https://doi.org/10.1016/j.synthmet.2016.06.025
  20. Минкин В.И., Цивадзе А.Ю., Бурлов А.С. и др. Патент РФ № 2470025 // Б.И. № 35. 20.12.2012.
  21. Gusev A.N., Kiskin M.A., Braga E.V. et al. // ACS Appl. Electron. Mater. 2021. V. 3. № 8. P. 3436. https://doi.org/10.1021/acsaelm.1c00402
  22. Гусев А.Н., Брага Е.В., Крюкова М.А. и др. // Коорд. химия. 2020. Т. 46. № 4. С. 232 (Gusev A.N., Braga E.V., Kryukova M.A. et al. // Russ. J. Coord. Chem. 2020. V. 46. P. 251). https://doi.org/10.1134/S107032842004003X
  23. Gusev A.N., Kiskin M.A., Braga E.V. et al. // J. Phys. Chem. C. 2019. V. 123. № 18. P. 11850. https://doi.org/10.1021/acs.jpcc.9b02171
  24. Barkanov A., Zakharova A., Vlasova T. et al. // J. Mater. Sci. 2022. V. 57. P. 8393. https://doi.org/10.1007/s10853-021-06721-4
  25. Marchetti F., Pettinari C., Di Nicola C. et al. // Coord. Chem. Rev. 2019. V. 401. P. 213069. https://doi.org/10.1016/j.ccr.2019.213069
  26. Marchetti F., Pettinari C., Pettinari R. // Coord. Chem. Rev. 2005. V. 249. P. 2909. https://doi.org/10.1016/j.ccr.2005.03.013
  27. Marchetti F., Pettinari C., Pettinari R. // Coord. Chem. Rev. 2015. V. 303. P. 1. https://doi.org/10.1016/j.ccr.2015.05.003
  28. Ураев А.И., Ниворожкин А.В., Бондаренко Г.И. и др. // Изв. АН. Сер. хим. 2000. № 11. С. 1892 (Uraev A., Nivorozhkin A., Bondarenko G. et al. // Russ. Chem. Bull. Int. Ed. 2000. V. 49. P. 1863). https://doi.org/10.1007/BF02494925
  29. Ураев А.И., Коршунов О.Ю., Ниворожкин А.Л. и др. // Журн. неорган. химии. 2009. Т. 54. № 4. С. 575 (Uraev A.I., Korshunov O.Y., Nivorozhkin A.L. et al. // Russ. J. Inorg. Chem. 2009. V. 54. № 4. P. 521). https://doi.org/10.1134/S0036023609040068
  30. Nivorozhkin A.L., Uraev A.I., Bondarenko G.I. et al. // Chem. Commun. 1997. № 18. P. 1711. https://doi.org/10.1039/a704879c
  31. Ураев А.И., Ниворожкин А.Л., Курбатов В.П. и др. // Изв. АН. Сер. хим. 2003. № 11. С. 2386 (Uraev A.I., Nivorozhkin A.L., Divaeva L.N. et al. // Russ. Chem. Bull. 2003. V. 52. № 11. P. 2523).
  32. Порай-Кошиц Б.А., Квитко И.Я. // Журн. общ. химии. 1962. Т. 32. № 12. С. 4050 (Porai-Koshits B.A., Kvitko I.Ya. // Zh. Obshch. Khim. 1962. V. 32. P. 4050).
  33. Квитко И.Я., Порай-Кошиц Б.А. // Журн. орган. химии. 1964. Т. 34. № 9. С. 3005 (Kvitko I.Ya., Porai-Koshits B.A. // Zh. Org. Khim. 1964. V. 34. P. 3005).
  34. Красовицкий Б.М., Болотин Б.М. Органические люминофоры. М.: Химия, 1984. С. 336.
  35. Perdew J.P., Burke K., Ernzerhof M. // Phys. Rev. Lett. 1997. V. 78. P. 1396. https://doi.org/10.1103/physrevlett.78.1396
  36. Perdew J.P., Ernzerhof M., Burke K. // J. Chem. Phys. 1996. V. 105. P. 9982. https://doi.org/10.1063/1.472933
  37. Woon D.E., Dunning T.H., Jr. // J. Chem. Phys. 1993. V. 98. P. 1358. https://doi.org/10.1063/1.464303
  38. Frisch M.J., Trucks G.W., Schlegel H.B. et al. Gaussian 03. Revision A.1. Pittsburgh (PA, USA): Gaussian, Inc., 2003.
  39. Tomasi J., Mennucci B., Cammi R. // Chem. Rev. 2005. V. 105. P. 2999. https://doi.org/10.1021/cr9904009
  40. Lazarenko V.A., Dorovatovskii P.V., Zubavichus Y.V. et al. // Crystals. 2017. V. 7. № 11. P. 325. https://doi.org/10.3390/cryst7110325
  41. Svetogorov R.D., Dorovatovskii P.V., Lazarenko V.A. // Cryst. Res. Tech. 2020. V. 55. № 5. P. 1900184. https://doi.org/10.1002/crat.201900184
  42. Kabsch W. // Acta Crystallogr. D. 2010. V. 66. № 2. P. 125. https://doi.org/10.1107/S0907444909047337
  43. Sheldrick G.M. // Acta Crystallogr. C. 2015. V. 71. P. 3. https://doi.org/10.1107/S2053229614024218
  44. Burlov A.S., Vlasenko V.G., Koshchienko Yu.V et al. // Polyhedron. 2018. V. 154. P. 65. https://doi.org/10.1016/j.poly.2018.07.034
  45. Burlov A.S., Vlasenko V.G., Koshchienko Yu.V. et al. // Polyhedron. 2018. V. 144. P. 249. https://doi.org/10.1016/j.poly.2018.01.020
  46. Фетисов Л.Н., Зубенко А.А., Бодряков А.Н., Бодрякова М.А. // Междунар. паразитологический симп. “Современные проблемы общей и частной паразитологии”. 2012. С. 70.
  47. Minkin V.I., Garnovskii A.D., Elguero J. et al. // Adv. Heterocycl. Chem. 2000. V. 76. P. 157.
  48. Chatziefthimiou S.D., Lazarou Y.G., Hadjoudis E. et al. // J. Phys. Chem. B 2006. V. 110. P. 23701. https://doi.org/10.1021/jp064110p
  49. Feng Bao, Juan Feng, Seik Weng Ng // Acta Crystallogr. E. 2005. V. 61. P. m2393. https://doi.org/10.1107/S1600536805033805
  50. Rong-Ming Ma, Shao-Fa Sun, Seik Weng Ng // Acta Crystallogr. E. 2006. V. 62. P. m2711. https://doi.org/10.1107/S1600536806038049

Supplementary files

Supplementary Files
Action
1. JATS XML
2.

Download (76KB)
3.

Download (273KB)
4.

Download (437KB)
5.

Download (539KB)
6.

Download (103KB)
7.

Download (688KB)
8.

Download (90KB)

Copyright (c) 2023 В.Г. Власенко, А.С. Бурлов, М.С. Милутка, Ю.В. Кощиенко, А.И. Ураев, В.А. Лазаренко, Н.И. Макарова, А.В. Метелица, А.А. Зубенко, Д.А. Гарновский