Dynamic Magnetic Susceptibility Method in Studies of Coordination Compounds

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

The measurement of the dynamic magnetic susceptibility is a universal method, which is used for the evaluation of magnetic properties of single molecule magnets by scientists all over the world. An information in the Russian scientific literature that can be useful for practical mastering of this method is presently insufficient. To fill this gap, in this work we present a detailed procedure of a magnetochemical experiment for observing slow magnetic relaxation in coordination compounds of 3d- and 4f-element ions and the complete characterization of the dynamics of the magnetic behavior. Special attention is given to usually omitted but important details related to all stages of studying the magnetic relaxation dynamics. The main variants of sample preparation are described, the logics of the construction of a measuring sequence and the procedure of experimental data processing are discussed, and advantages and drawbacks of some programs of the calculation of magnetic relaxation dynamics data are considered. The main concepts and equations used in experimental data analysis are presented, and the primary conclusions that can be made from the obtained results are proposed.

Full Text

Restricted Access

About the authors

N. N. Efimov

Kurnakov Institute of General and Inorganic Chemistry, Russian Academy of Sciences

Author for correspondence.
Email: nnefimov@narod.ru
Russian Federation, Moscow

K. A. Babeshkin

Kurnakov Institute of General and Inorganic Chemistry, Russian Academy of Sciences

Email: nnefimov@narod.ru
Russian Federation, Moscow

A. V. Rotov

Kurnakov Institute of General and Inorganic Chemistry, Russian Academy of Sciences

Email: nnefimov@narod.ru
Russian Federation, Moscow

References

  1. Sessoli R., Gatteschi D., Caneschi A., et al. // Nature. 1993. V. 365. P. 141.
  2. Ali J., Kumar P., Chandrasekhar V. // Chem. An Asi. J. 2023. V. 19. Art. e202300812
  3. Aravena D., Ruiz E. // Dalton Trans. 2020. V 49. P. 9916.
  4. Bernot K. // Eur. J. Inorg. Chem. 2023. V. 26. Art e202300336.
  5. Edelmann F.T., Farnaby J.H., Jaroschik F., et al. // Coord. Chem. Rev. 2019. V. 398. P. 113005.
  6. Harriman K.L.M., Errulat D., Murugesu M. // Trends in Chem. 2019. V 1. P. 425.
  7. Kragskow J.G.C., Mattioni A., Staab J.K. et al. // Chem. Soc. Rev. 2023. V. 52. P. 4567
  8. Liddle S.T., Van Slageren J. // Chem. Soc. Rev. 2015. V. 44, P. 6655.
  9. Marin R., Brunet G., Murugesu M. // Angew. Chem. Int. Ed. 2021. V. 60. P. 1728.
  10. Matheson B.E., Dais T.N., Donaldson M.E. et al. // Inorg. Chem. Front. 2023. V. 10. P. 6427.
  11. Pointillart F., Bernot K., Le Guennic B., et al. // Chem. Commun. 2023. V. 59. P. 8520.
  12. Pointillart F., Cador O., Le Guennic B., et al. // Coord. Chem. Rev. 2017. V. 346. P. 150.
  13. Raza A., Perfetti M. // Coord. Chem. Rev. 2023. V. 490. P. 215213.
  14. Sekine Y., Nakamura R., Akiyoshi R., et al. // Chem. Plus Chem. 2023. V. 88. Art e202200463
  15. Shao D., Wang X. // Chin. J. Chem. 2020. V. 38, P. 1005.
  16. Swain A., Sharma T., Rajaraman G. // Chem. Commun. 2023. V. 59. P. 3206.
  17. Titiš J., Rajnák C., Boča R. // Inorganics. 2023. V. 11. P. 452.
  18. Vieru V., Gómez‐Coca S., Ruiz E. et al. // Ang. Chem. 2024. V. 136. Art e202303146.
  19. Vostrikova K.E. // Inorganics. 2023. V. 11. P. 307.
  20. Wang C., Meng Y.-S., Jiang S.-D. et al. // Sci. China Chem. 2023. V. 66. P. 683–702.
  21. Wang J., Sun C., Zheng Q. et al. // Chem. An Asi. J. 2023. V. 18. Art e202201297.
  22. Yin X., Deng L., Ruan L. et al. // Materials. 2023. V. 16. P. 3568.
  23. Zabala-Lekuona A., Seco J.M., Colacio E. // Coord. Chem. Rev. 2021. V. 441. P. 213984.
  24. Zhu Z., Li X.-L., Liu S. et al. // Inorg. Chem. Front. 2020. V. 7. P. 3315.
  25. Zhu Z., Tang J. // Chem. Soc. Rev. 2022. V. 51, P. 9469.
  26. Kalinnikov, V.T. and Rakitin, Yu.V., Vvedenie v magnetokhimiyu: Metod staticheskoi magnitnoi vospriimchivosti v khimii (Introduction to Magnetochemistry: Static Magnetic Susceptibility Method in Chemistry), Moscow: Nauka, 1980, p. 302.
  27. Carlin, R.L., Magnetochemistry, Berlin: Springer, 1986.
  28. Kahn O. Molecular Magnetism. Weinheim: VCH Publishers. 1993. P. 408
  29. Вонсовский С.В. Магнетизм. М.: Наука, 1971. С. 1032
  30. Rakitin, Yu.V. and Kalinnikov, V.T., Sovremennaya magnetokhimiya (Modern Magnetochemistry), St. Petersburg: Nauka, 1994, p. 272.
  31. Novikov V.V., Nelyubina Yu.V. // Russ. Chem. Rev. 2021 V. 90 P. 1330.
  32. Long J., Lyubov D.M., Kissel´ A.A. et al. // CrystEngComm. 2022. V. 24. P. 6953.
  33. Long J., Tolpygin A.O., Lyubov D.M. et al. // 2021. Dalton Trans. V. 50. P. 8487.
  34. Long J., Tolpygin A.O., Mamontova E. et al. // Inorg. Chem. Front. 2021. V. 8. P. 1166.
  35. Kazin P.E., Zykin M.A., Trusov L.A. et al. // Dalton Trans. 2020. V. 49. P. 2014.
  36. Sharifullin T.Z., Vasiliev A.V., Eliseev A.A. et al. // Mendel. Commun. 2023. V. 33. P. 866.
  37. Zykin M.A., Kazin P.E., Jansen M. // Chem. A Eur. J. 2020. V. 26. P. 8834.
  38. Lutsenko I.A., Kiskin M.A., Nikolaevskii S.A. et al. // ChemistrySelect. 2019. V. 4. P. 14261.
  39. Nehrkorn J., Valuev I.A., Kiskin M.A. et al. // J. Mater. Chem. 2021. V 9. P. 9446.
  40. Krotkii I.I., Shcherbakova E. Yu., Lyubchenko S.N. et al. // Polyhedron. 2024. V. 251. P. 116876.
  41. Tupolova Y.P., Korchagin D.V., Andreeva A.S. et al. // Magnetochemistry. 2022. V. 8. P. 153.
  42. Aldoshin S.M., Antipin I.S., Kniazeva M.V. et al. // Israel J. Chem. 2020. V. 60. P. 600.
  43. Korchagin D.V., Ivakhnenko E.P., Demidov O.P. et al. // New J. Chem. 2023. V. 47. P. 21353.
  44. Bonnenfant C., Vadra N., Rouzières M. et al. // Dalton Trans. 2024. V. 53. P. 2815.
  45. Dhers S., Wilson R.K., Rouzières M. et al. // Cryst. Growth Des. 2020. V. 20. P. 1538.
  46. Liu J., Nodaraki L.E., Martins D.O. et al. // Eur. J. Inorg. Chem. 2023. V. 26. Art. e202300552.
  47. Rajnák C.; Titiš J.; Boča R. // Magnetochemistry 2021. V. 7. 76.
  48. Petrosyants S.P., Babeshkin K.A., Ilyukhin A.B. et al. // Magnetochemistry. 2023. V. 9. P. 31.
  49. Babeshkin K.A., Gavrikov A.V., Petrosyants S.P. et al. // Eur. J. Inorg. Chem. 2000 V. 46. P. 4380
  50. Feng M., Tong M.L. // Chem. Eur. J. 2018 V. 24. P. 7574.
  51. Mamontova E., Long J., Ferreira R. et al. // Magnetochemistry. 2016. V. 2. P. 41.
  52. Habib F., Lin P.-H., Long J. et al. // J. Am. Chem. Soc. 2011. V. 133. P. 8830.
  53. Origin and OriginPro 2024. https://www.originlab.com/
  54. KaleidaGraph v5 for Mac and Windows. https://www.synergy.com/
  55. Argand J. R. Essai sur une manière de représenter les quantités imaginaires dans les constructions géométriques. Paris: Gauthier-Villars, 1874.
  56. Cole K.S., Cole R.H. // J. Chem. Phys. 1941. V. 9. P. 341.
  57. Ho L.T.A., Chibotaru L.F. // Phys. Rev. B. 2016. V. 94. P. 104422.
  58. Pavlov A.A., Nelyubina Y.V., Kats S.V. et al. // J. Phys. Chem. Lett. 2016. V. 7. P. 4111.
  59. Gavrikov A.V., Koroteev P.S., Efimov N.N. et al. // Dalton Trans. 2017. V. 46. P. 3369.
  60. Gavrikov A.V., Efimov N.N., Dobrokhotova Zh.V. et al. // Dalton Trans. 2017. V. 46. P. 11806.
  61. Petrosyants S.P., Babeshkin K.A., Ilyukhin A.B. et al. // Russ. J. Coord. Chem. 2021. V. 47. P. 165.
  62. Novitchi G., Jiang S., Shova S. et al. // Inorg. Chem. 2017. V. 56 P. 14809.
  63. The Chilton Group. Magnetism, Spectroscopy, Theory. https://www.nfchilton.com/
  64. Reta D., Chilton N.F. // Phys. Chem. Chem. Phys. 2019. V. 21. P. 23567.
  65. Blackmore W.J.A., Gransbury G.K., Evans P. et al. // Phys. Chem. Chem. Phys. 2023 V. 25. P. 16735.
  66. Rouzières M. MagSuite. Zenodo, 2020. https://doi.org/10.5281/zenodo.4030310
  67. The Molecular Materials & Magnetism. https://m3.crpp.cnrs.fr/magsuite/
  68. Polyzou C.D., Koumousi E.S., Lada Z.G. et al. // Dalton Trans. 2017. V. 46. P. 14812.

Supplementary files

Supplementary Files
Action
1. JATS XML
2. Fig. 1. Change in sample magnetization (red line) relative to change in amplitude of alternating magnetic field (blue line). Fast magnetic relaxation (sample magnetization changes in phase with change in external magnetic field strength) (a); slow magnetic relaxation (the measured signal lags in phase with the applied alternating magnetic field) (b).

Download (148KB)
3. Fig. 2. Search for the optimal value of magnetic field strength. Dependence χ˝(ν) of the [Dy(H₂O)₄(Terpy)Cl]Cl₂ · 3H₂O complex at a temperature of 5 K in magnetic fields of different strengths. Constructed with modifications according to data from [48].

Download (138KB)
4. Fig. 3. The maximum in the χ˝(ν) dependence goes beyond the low-frequency limit. The χ˝(ν) dependence of the [Yb(H₂O)₄(Terpy)Cl]Cl₂ · 3H₂O complex at a temperature of 2 K in magnetic fields of different strengths. Constructed with modifications based on the data of [48].

Download (96KB)
5. Fig. 4. Frequency dependences of the real χ´(ν) and imaginary χ˝(ν) components of the dynamic magnetic susceptibility of the [Dy(H₂O)₄(Terpy)Cl]Cl₂ · 3H₂O complex in a magnetic field of optimal strength of 1500 Oe. Constructed with modifications based on the data of [48].

Download (217KB)
6. Fig. 5. An increase in the amplitude of the χ˝(ν) signal with an increase in temperature from 2 to 3 K indicates the presence of magnetic interactions between paramagnetic centers. Frequency dependences of the real χ´(ν) and imaginary χ˝(ν) components of the dynamic magnetic susceptibility of the [Dy(H₂O)6Cl₂]Cl complex in a magnetic field of optimal strength of 1000 Oe. Constructed with modifications according to the data of [48].

Download (148KB)
7. Fig. 6. Temperature dependences of χ´ (a) and χ˝ (b) for the [Er(H₂O)₆Cl₂]Cl complex [48].

Download (131KB)
8. Fig. 7. Cole–Cole dependences for the [Er(H₂O)₆Cl₂]Cl complex in a magnetic field of 1000 Oe and a temperature range of 2–5 K. Constructed with modifications based on data from [48].

Download (140KB)
9. Fig. 8. Dependences of relaxation time on temperature with different plotting along coordinate axes for the Orbach (a, b) and Raman (c, d) mechanisms with the parameters shown in the graphs.

Download (311KB)
10. schedule 1

Download (90KB)
11. schedule 2

Download (89KB)
12. schedule 3

Download (63KB)
13. schedule 4

Download (59KB)
14. Additional material
Download (321KB)

Copyright (c) 2024 Российская академия наук