Reaction of 2,3,4,5,6-Pentafluorobenzamide with Potassium Hydride: Unexpected Activation of the C–F Bond and Dimerization of Organofluorine Ligand

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

The reaction of potassium hydride with 2,3,4,5,6-pentafluorobenzamide (FBAm) in dimethoxyethane results in activation of the C–F bond in the para-position to the C(O)NH2 group followed by dimerization of FBAm to form a potassium salt with one free amide group. The structure of the binuclear reaction product {(DME)2K+[C6F5–C(O)N–C6F4–C(O)NH2]}2 (I) was determined by X-ray diffraction (CCDC 2311402), the purity of the product was confirmed by NMR spectroscopy.

Full Text

Restricted Access

About the authors

D. S. Yambulatov

Kurnakov Institute of General and Inorganic Chemistry, Russian Academy of Sciences

Author for correspondence.
Email: yambulatov@yandex.ru
Russian Federation, Moscow

T. V. Astaf´eva

Kurnakov Institute of General and Inorganic Chemistry, Russian Academy of Sciences

Email: yambulatov@yandex.ru
Russian Federation, Moscow

J. K. Voronina

Kurnakov Institute of General and Inorganic Chemistry, Russian Academy of Sciences

Email: yambulatov@yandex.ru
Russian Federation, Moscow

S. A. Nikolaevskii

Kurnakov Institute of General and Inorganic Chemistry, Russian Academy of Sciences

Email: sanikol@igic.ras.ru
Russian Federation, Moscow

M. A. Kiskin

Kurnakov Institute of General and Inorganic Chemistry, Russian Academy of Sciences

Email: yambulatov@yandex.ru
Russian Federation, Moscow

I. L. Eremenko

Kurnakov Institute of General and Inorganic Chemistry, Russian Academy of Sciences

Email: yambulatov@yandex.ru
Russian Federation, Moscow

References

  1. Hiyama T. Organofluorine Compounds: Chemistry and Applications. Berlin: Springer, 2000. 272 p.
  2. Reichenbächer K., Süss H.I., Hulliger J. // Chem. Soc. Rev. 2005. V. 34. P. 22.
  3. Kirsch P. Modern Fluoroorganic Chemistry: Synthesis, Reactivity, Applications, Weinheim (Germany): Wiley-VCH, 2013. 320 p.
  4. Nenajdenko V. Fluorine in Heterocyclic Chemistry. V. 1, 2. Switzerland: Springer International Publishing, 2014. 681 p.
  5. Amii H., Uneyama K. // Chem. Rev. 2009. V. 109. P. 2119.
  6. Yang K., Song M., Ali A. I. M. et al. // Chem. Asian J. 2020. V. 15. P. 729.
  7. Purser S., Moore P.R., Swallow S. // Chem. Soc. Rev. 2008. V. 37. P. 320
  8. Wang J., Sánchez-Roselló M., Aceña J.L. et al. // Chem. Rev. 2014. V. 114. № 4. P. 2432.
  9. Nosova E.V., Lipunova G.N., Charushin V.N., Chupakhin O.N. // J. Fluor. Chem. 2018. V. 212. P. 51.
  10. Mei H., Han J., Klika K.D. et al. // Eur. J. Med. Chem. 2020. V. 186. P. 111826.
  11. Politanskaya L.V., Selivanova G.A., Panteleeva E.V. et al. // Russ. Chem. Rev. 2019. V. 88. P. 425.
  12. Ahrens T., Kohlmann J., Ahrens M., Braun T. // Chem. Rev. 2015. V. 115. P. 931.
  13. Yang S.-D. // Homogeneous Catalysis for Unreactive Bond Activation / Ed. Shi Z.-J., John Wiley & Sons, Inc., 2015. P. 203.
  14. Unzner T.A., Magauer T. // Tetrahedron Lett. 2015. V. 56. P. 877.
  15. Politanskaya L., Tretyakov E. // J. Fluor. Chem. 2020. V. 236. P. 109592.
  16. Fu L., Chen Q., Nishihara Y. // Chem. Rec. 2021. V. 21. P. 3394.
  17. Ai H.-J., Ma X., Song Q., Wu X.-F. // Sci. China Chem. 2021. V. 64. P. 1630.
  18. Chen W., Bakewell C., Crimmin M.R. // Synthesis. 2017. V. 49. P. 810.
  19. Tobisu M., Xu T., Shimasaki T., Chatani N. // J. Am. Chem. Soc. 2011. V. 133. P. 19505.
  20. Zhang T., Nohira I., Chatani N. // Org. Chem. Front. 2021. V. 8. P. 3783.
  21. Nohira I., Chatani N. // ACS Catal. 2021. V. 11. P. 4644.
  22. Kim Y. M., Yu S. // J. Am. Chem. Soc. 2003. V. 125. P. 1696.
  23. Mikami K., Miyamoto T., Hatano M. // Chem. Commun. 2004. V. 18. P. 2082.
  24. Cargill M. R., Sandford G., Tadeusiak A. J. et al. // J. Org. Chem. 2010. V. 75. P. 5860.
  25. Kawamoto K., Kochi T., Sato M. et al. // Tetrahedron Lett. 2011. V. 52. P. 5888.
  26. Reinhold M.; Grady J.E., Perutz J. // J. Am. Chem. Soc. 2004. V. 126. P. 5268.
  27. Burling S., Elliott P.I.P., Jasim N. A. et al. // Dalton Trans. 2005. V. 22. P. 3686.
  28. Nova A., Erhardt S., Jasim N. A. et al. // J. Am. Chem. Soc. 2008. V. 130. P. 15499.
  29. Chan P.K., Leong W.K. // Organometallics. 2008. V. 27. P. 1247.
  30. Ishii Y., Chatani N., Yorimitsu S., Murai S. // Chem. Lett. 1998. V. 27. P. 157.
  31. Vela J., Smith J.M., Yu Y. et al. // J. Am. Chem. Soc. 2005. V. 127. P. 7857.
  32. Kuehnel M.F., Lentz D., Braun T. // Angew. Chem. Int. Ed. 2013. V. 52. P. 3328.
  33. Yan G. // Chem. Eur. J. 2022. V. 28. Art. e202200231.
  34. Li H., Liao S., Xu Y. // Chem. Lett. 1996. V. 25. P. 1059.
  35. Zhang Y., Liao S., Xu Y. et al. // Synth. Commun. 1997. V. 27. P. 4327.
  36. Fuchibe K., Akiyama T. // Synlett. 2004. V. 2. P. 1282.
  37. Robertson D.W., Krushinski J.H., Fuller R.W., Leander J.D.J. // Med. Chem. 1988. V. 31. P. 1418.
  38. Schultz A.G., Guo Z. // Tetrahedron Lett. 1995. V. 36. P. 659.
  39. Kowalczyk B.A. // Synthesis. 1997. V. 7. P. 1411.
  40. Boivin J., Boutillier P., Zard S. Z. // Tetrahedron Lett. 1999. V. 40. P. 2529.
  41. Rogers J.F., Green D.M. // Tetrahedron Lett. 2002. V. 43. P. 3585.
  42. Ishihara K., Hasegawa A., Yamamoto H. // Synlett. 2002. P. 1299.
  43. SMART (Control) and SAINT (Integration) Software. Version 5.0. Madison (WI, USA): Bruker AXS Inc., 1997.
  44. Krause L., Herbst-Irmer R., Sheldrick G.M., Stalke D. // J. Appl. Crystallogr. 2015. V. 48. P. 3.
  45. Dolomanov O.V., Bourhis L.J., Gildea R.J. et al. // J. Appl. Crystallogr. V. 42. 2009. P. 339.
  46. Sheldrick G.M. // Acta Crystallogr. C. 2015. V. 71. P. 3.
  47. Prakash G.K.S., Munoz S.B., Papp A. et al. // Asian J. Org. Chem. 2012. V. 1. P. 146.
  48. Kawazura H., Taketomi T. // J. Polym. Sci. B. 1972. V. 10. P. 265. https://doi.org/10.1002/pol.1972.110100406
  49. Sergeev V.A., Shitikov V.K., Nedel´kin V.I. // Russ. Chem. Rev. 1978. V. 47. P. 1095. https://doi.org/10.1070/RC1978v047n11ABEH002295

Supplementary files

Supplementary Files
Action
1. JATS XML
2. Fig. 1. Molecular structures of two independent molecules A (a) and B (b) in complex I (thermal ellipsoids with a probability of 30%, solvate molecules and disordering of DME molecules in molecule A are not shown).

Download (351KB)
3. Fig. 2. Fragment of packing I in a crystal (hydrogen atoms in DME molecules and solvate molecules are not shown; dotted lines indicate H-bonds and interactions C=O...π, π...π).

Download (462KB)
4. Scheme 1.

Download (81KB)
5. Scheme 2.

Download (153KB)

Copyright (c) 2024 Российская академия наук