Redox-Active Tin(IV) Complexes Based on Sterically Hindered Catecholate Ligands

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

The oxidative addition of sterically hindered 3,6-dicyclohexyl-o-benzoquinone (L1), 3,5-di-tert-octyl-o-benzoquinone (L2), 4-tert-octyl-o-benzoquinone (L3), and 3,5-bis(2-phenylpropyl)-o-benzoqui-none (L4) to tin(II) chloride in THF affords the corresponding tin(IV) catecholate complexes with the generalformula RCatSnCl2 · 2THF, where Cat is the catecholate fragment; and R is 3,6-с-Hex (I), 3,5-tert-Oct (II), 4-tert-Oct (III), and 3,5-C(Me)2 Ph (IV), regardless of the molar ratio of the starting reactants. The molecu-lar structures of substituted o-benzoquinone L4 and complexes I and III in the crystalline form are determined by X-ray diffraction (XRD) (CIF files CCDC nos. 2259370 (L4), 2259371 (I), and 2259372 (III)). The oxidation-reduction properties of synthesized compounds I–IV are studied by cyclic voltammetry.

Full Text

Restricted Access

About the authors

S. V. Baryshnikova

Razuvaev Institute of Organometallic Chemistry, Russian Academy of Sciences

Author for correspondence.
Email: baryshnikova@iomc.ras.ru
Russian Federation, Nizhny Novgorod

M. V. Arsen’eva

Razuvaev Institute of Organometallic Chemistry, Russian Academy of Sciences

Email: baryshnikova@iomc.ras.ru
Russian Federation, Nizhny Novgorod

N. O. Druzhkov

Razuvaev Institute of Organometallic Chemistry, Russian Academy of Sciences

Email: baryshnikova@iomc.ras.ru
Russian Federation, Nizhny Novgorod

G. K. Fukin

Razuvaev Institute of Organometallic Chemistry, Russian Academy of Sciences

Email: baryshnikova@iomc.ras.ru
Russian Federation, Nizhny Novgorod

E. V. Baranov

Razuvaev Institute of Organometallic Chemistry, Russian Academy of Sciences

Email: baryshnikova@iomc.ras.ru
Russian Federation, Nizhny Novgorod

A. V. Piskunov

Razuvaev Institute of Organometallic Chemistry, Russian Academy of Sciences

Email: baryshnikova@iomc.ras.ru
Russian Federation, Nizhny Novgorod

References

  1. Pierpont C. // Coord. Chem. Rev. 2001. V. 219–221. P. 415.
  2. Kaim W.// Inorg. Chem. 2011. V. 50. P. 9752.
  3. Mao G., Song Y., Hao T. et al. // Chin. Sci. Bull. 2014. V. 59. P. 2936.
  4. Starikova A.A., Minkin V. I. // Russ. Chem. Rev. 2018. V. 87. P. 1049.
  5. Fomenko I.S., Gushchin A. L. // Russ. Chem. Rev. 2020. V. 89. P. 966.
  6. Broere D.L., Plessius R., Van der Vlugt J. I. // Chem. Soc. Rev. 2015. V. 44. P. 6886.
  7. Luca O.R., Crabtree R. H. // Chem. Soc. Rev. 2013. V. 42. P. 1440.
  8. Baryshnikova S.V., Poddel’sky A.I. // Molecules. 2022. V. 27. P. 3928.
  9. Ershova I.V., Piskunov A. V., and Cherkasov V. K. // Russ. Chem. Rev. 2020. V. 89. P. 1157.
  10. Pashanova K.I., Poddel’sky A.I., Piskunov A. V. // Coord. Chem. Rev. 2022. V. 459. P. 214399.
  11. Zanello P., Corsini M. // Coord. Chem. Rev. 2006. V. 250. P. 2000.
  12. Poddel’skii A.I., Abakumov G. A., Bubnov M. P., Cherkasov V. K., and Abakumova L. G. // Izv. Akad. Nauk. Ser. Khim. 2004. № 6. P. 1142.
  13. Abakumov G.A., and Nevodchikov V. I. // Dokl. Akad. Nauk SSSR. 1982. V. 266. № 6. P. 1407.
  14. Lange C.W., Foldeaki M., Nevodchikov V. I. et al. // J. Am. Chem. Soc. 1992. V. 114. P. 4220.
  15. Jung O.-S., Pierpont C. G. // J. Am. Chem. Soc. 1994. V. 116. P. 2229.
  16. Nevodchikov V.I., Abakumov G. A., Cherkasov V. K., Razuvaev G. A. // J. Organomet. Chem. 1981. V. 214. P. 119.
  17. Pierpont C.G., Buchanan R. M. // Coord. Chem. Rev. 1981. V. 38. P. 45.
  18. Poddel’sky A.I., Cherkasov V. K., Abakumov G. A. // Coord. Chem. Rev. 2009. V. 253. P. 291.
  19. Abakumov G.A., Poddel’sky A.I., Grunova E. V. et al. // Angew. Chem. 2005. V. 117. P. 2827.
  20. Cherkasov V. K. Abakumov G. A., Grunova E. V. et al. // Chem. Eur. J. 2006. V. 12. P. 3916.
  21. Piskunov A.V., Ershova I. V., Fukin G. K., Shavyrin A. S. // Inorg. Chem. Commun. 2013. V. 38. № 12. P. 127.
  22. Piskunov A.V., Piskunova M. S., and Chegerev M. G. // Russ. Chem. Bull. 2014. № 4. P. 912.
  23. Fedushkin I.L., Dodonov V. A., Skatova A. A. et al. // Chem. Eur. J. 2018. V. 24. № 8. P. 1877.
  24. Fedushkin I.L., Nikipelov A. S., Morozov A. G. et al. // Chem. Eur. J. 2012. V. 18. P. 255.
  25. Ilyakina E.V., Poddel’sky A.I., Cherkasov V. K., Abakumov G.A. // Mendeleev Commun. 2012. V. 22. P. 208.
  26. Ilyakina E.V., Poddel’sky A.I., Piskunov A.V. et al. // Inorg. Chim. Acta. 2013. V. 394. P. 282.
  27. Gordon A., and Ford R. The Chemist’s Companion: A Handbook of Practical Data, Techniques, and References. New York: Wiley, 1972.
  28. Райхардт К. Растворители и эффекты среды в органической химии. М.: Мир, 1991. 763 с.
  29. Kocherova T.N., Druzhkov N. O., Mart’yanov K.A. et al. // Russ. Chem. Bull. 2020. V. 69. № 12. P. 2383.
  30. Kocherova T.N., Druzhkov N. O., Arsen’ev M.V. et al. // Russ. Chem. Bull. 2023. V. 72. № 5. P. 1192.
  31. Data Collection, Reduction and Correction Program. CrysAlisPro 1.171.38.46 – Software Package. Rigaku OD, 2015.
  32. APEX4. Bruker Molecular Analysis Research Tool. Version 2021.4–0. Madison (WI, USA): Bruker AXS Inc., 2021.
  33. SAINT Data Reduction and Correction Program. Version 8.40B. Madison (WI, USA): Bruker AXS, 2019.
  34. Krause L., Herbst-Irmer R., Sheldrick G. M., Stalke D. // J. Appl. Cryst. 2015. V. 48. P. 3.
  35. Sheldrick G. // Acta Crystallogr. A. 2015. V. 71. P. 3.
  36. Sheldrick G.M. // SHELXTL. Version 6.14. Structure Determination Software Suite; Madison (WI, USA): Bruker AXS, 2003.
  37. Sheldrick G. // Acta Crystallogr. C. 2015. V. 71. P. 3.
  38. SCALE3 ABSPACK: Empirical absorption correction. CrysAlisPro 1.171.38.46 – Software Package, Rigaku OD, 2015.
  39. SADABS. Version 2016/2. Bruker/Siemens Area Detector Absorption Correction Program. Madison (WI, USA): Bruker AXS., 2016.
  40. Becke A.D. // J. Chem. Phys. 1993. V. 98. P. 5648.
  41. Lee C., Yang W., Parr R. G. // Phys. Rev. B. 1988. V. 37. P. 785.
  42. Dovesi R., Erba A., Orlando R. et al. // WIREs Comput Mol Sci. 2018. V. 8. P. 1360.
  43. Godbout N., Salahub D. R., Andzelm J., Wimmer E. // Can. J. Chem. 1992. V. 70. P. 560.
  44. Pritchard B.P., Altarawy D. et al. // J. Chem. Inf. Model. 2019. V. 59. P. 4814.
  45. Feller D. // J. Comput. Chem. 1996. V. 17. P. 1571.
  46. Schuchardt K.L., Didier B. T., Elsethagen T. et al. // J. Chem. Inf. Model. 2007. V. 47. № 3. P. 1045.
  47. Spek A.L. // Acta Crystallogr. C. 2015. V. 71. P. 9.
  48. Jelsch C., Guillot B., Lagoutte A., Lecomte C. // J. Appl. Crystallogr. 2005. V. 38. P. 38.
  49. Hansen N.K., Coppens P. // Acta Crystallogr. A. 1978. V. 34. P. 909.
  50. Stash A.I., Tsirelson V. G. // J. Appl. Cryst. 2014. V. 47. P. 2086.
  51. Batsanov S. // Russ. J. Inorg. Chem. 1991. V. 36. P. 1694.
  52. Baryshnikova S.V., Poddel’sky A.I., Bellan E. V. et al. // Inorg. Chem. 2020. V. 59. P. 6774.
  53. Lado A.V., Poddel’sky A.I., Piskunov A. V. et al. // Inorg. Chim. Acta. 2005. V. 358. P. 4443.
  54. Piskunov A.V., Lado A. V., Ilyakina E. V. et al. // J. Organomet. Chem. 2008. V. 693. P. 128.
  55. Turek J., Kampová H., Padelkova Z., Ruzicka A. // J. Organomet. Chem. 2013. V. 745–746. P. 25.
  56. Annan T.A., McGarvey B.R., Ozarowski A. et al. // Dalton Trans. 1989. V. 3. P. 439.
  57. Zubieta J.A., Zuckerman J. J. // Prog. Inorg. Chem. New York: Wiley Interscience, 1978. V. 24. P. 251.
  58. Archer S.J., Koch K. R., Schmidt S. // Inorg. Chim. Acta. 1987. V. 126. P. 209.
  59. Baryshnikova S.V., Bellan E. V., Poddel’sky A.I. et al. // Eur. J. Inorg. Chem. 2016. № 33. P. 5230.
  60. Ilyakina E.V., Poddel’sky A.I., Fukin G. K. et al. // Inorg. Chem. 2013. V. 52. P. 5284.
  61. Brown S.N. // Inorg. Chem. 2012. V. 51. С. 1251.
  62. Fukin G.K., Cherkasov A. V. // Mendeleev Commun. 2021. V. 31. P. 182.
  63. Pochekutova T.S., Fukin G. K., Baranov E. V. et al. // Inorg. Chim. Acta. 2022. V. 531. P. 120734.
  64. Bader R.F.W. Atoms in Molecules – A Quantum Theory. Oxford: Oxford Univ. Press., 1990.
  65. Fukin G.K., Baranov E. V., Jelsch C. et al. // J. Phys. Chem. A. 2011. V. 115. P. 8271.
  66. Фукин Г.К., Самсонов М. А., Баранов Е. В. и др. // Изв. АН. Сер. хим. 2016. № 1. P. 54.

Supplementary files

Supplementary Files
Action
1. JATS XML
2. Fig. 1. Structure of the A-benzoquinone L4 molecule (thermal ellipsoids of 30% probability are shown) a; b is a superposition of the structures of molecules A and B (green and blue bonds, respectively) of the L4 compound with thermal ellipsoids of atoms of 15% probability (hydrogen atoms are not shown).

Download (230KB)
3. Fig. 2. Molecular structure of complexes I (a) and III (b, molecule A); superposition of structures of molecules A and B of complex III (green and blue bonds, respectively) (c). Thermal ellipsoids of 50% probability are shown. Hydrogen atoms are not shown.

Download (159KB)
4. Fig. 3. CVA curves for complexes II and III (glassy carbon electrode, Ag/AgCl/KCl, 0.2 M [n-Bu4N]ClO4, CH2Cl2, c = 2 × 10-3 mol/l, V = 0.2 V/s, Ar).

Download (81KB)
5. Scheme 1.

Download (62KB)
6. Scheme 2.

Download (157KB)

Copyright (c) 2024 Российская академия наук