Two- and Three-Dimensional Polymeric Co(II) Terephthalates with 3,3',5,5'-Tetrabromo-4,4'-bipyridine (3,3'5,5'-BrBipy)
- Authors: Sakhapov I.F.1,2, Zagidullin A.A.2,3, Islamov D.R.2,3, Sharutin V.V.1, Yakhvarov D.G.2,3, Zherebtsov D.A.1, Milyukov V.A.2, Zaguzin A.S.1,4, Fedin V.P.4, Adonin S.A.1,4,5
-
Affiliations:
- South Ural State University
- Arbuzov Institute of Organic and Physical Chemistry, Russian Academy of Sciences
- Kazan (Volga Region) Federal University
- Nikolaev Institute of Inorganic Chemistry, Siberian Branch, Russian Academy of Sciences
- Favorsky Irkutsk Institute of Chemistry, Siberian Branch, Russian Academy of Sciences
- Issue: Vol 50, No 2 (2024)
- Pages: 117-123
- Section: Articles
- URL: https://rjonco.com/0132-344X/article/view/667620
- DOI: https://doi.org/10.31857/S0132344X24020062
- EDN: https://elibrary.ru/orjqlz
- ID: 667620
Cite item
Abstract
The reaction of 3,3',5,5'-tetrabromo-4,4'-bipyridine (BrBipy) with cobalt nitrate and terephthalic acid (H2Bdc) gave 2D and 3D metal-organic frameworks {[Co2(Bdc)2(BrBipy)2(H2O)4] · 4DMF} (I) and {[Co2(Ddc)4(BrDipy)] · · 2MeOH} (II), respectively. The structure of the complexes was studied by X-ray diffraction (CCDC nos. 2259216 (I) and 2259214) (II)).
Full Text

About the authors
I. F. Sakhapov
South Ural State University; Arbuzov Institute of Organic and Physical Chemistry, Russian Academy of Sciences
Author for correspondence.
Email: adonin@niic.nsc.ru
Russian Federation, Chelyabinsk; Kazan
A. A. Zagidullin
Arbuzov Institute of Organic and Physical Chemistry, Russian Academy of Sciences; Kazan (Volga Region) Federal University
Email: adonin@niic.nsc.ru
Alexander Butlerov Institute of Chemistry
Russian Federation, Kazan; KazanD. R. Islamov
Arbuzov Institute of Organic and Physical Chemistry, Russian Academy of Sciences; Kazan (Volga Region) Federal University
Email: adonin@niic.nsc.ru
Alexander Butlerov Institute of Chemistry
Russian Federation, Kazan; KazanV. V. Sharutin
South Ural State University
Email: adonin@niic.nsc.ru
Russian Federation, Chelyabinsk
D. G. Yakhvarov
Arbuzov Institute of Organic and Physical Chemistry, Russian Academy of Sciences; Kazan (Volga Region) Federal University
Email: adonin@niic.nsc.ru
Alexander Butlerov Institute of Chemistry
Russian Federation, Kazan; KazanD. A. Zherebtsov
South Ural State University
Email: adonin@niic.nsc.ru
Russian Federation, Chelyabinsk
V. A. Milyukov
Arbuzov Institute of Organic and Physical Chemistry, Russian Academy of Sciences
Email: adonin@niic.nsc.ru
Russian Federation, Kazan
A. S. Zaguzin
South Ural State University; Nikolaev Institute of Inorganic Chemistry, Siberian Branch, Russian Academy of Sciences
Email: adonin@niic.nsc.ru
Russian Federation, Chelyabinsk; Novosibirsk
V. P. Fedin
Nikolaev Institute of Inorganic Chemistry, Siberian Branch, Russian Academy of Sciences
Email: adonin@niic.nsc.ru
Russian Federation, Novosibirsk
S. A. Adonin
South Ural State University; Nikolaev Institute of Inorganic Chemistry, Siberian Branch, Russian Academy of Sciences; Favorsky Irkutsk Institute of Chemistry, Siberian Branch, Russian Academy of Sciences
Email: adonin@niic.nsc.ru
Russian Federation, Chelyabinsk; Novosibirsk; Irkutsk
References
- Kiraev S.R., Nikolaevskii S. A., Kiskin M. A. et al. // Inorg. Chim. Acta. 2018. V. 477. P. 15. https://doi.org/10.1016/J.ICA.2018.02.011
- Cheplakova A.M., Gusarov V. S., Samsonenko D. G. et al. // J. Struct. Chem. 2022. V. 63. № 6. P. 895. https://doi.org/10.1134/S0022476622060063
- Li G.-L., Yin W.-D., Zhang J.-Y. et al. // Russ. J. Inorg. Chem. 2022. V. 67. № 11. P. 1745. https://doi.org/10.1134/S003602-3622600800
- Yashkova K.A., Mel’nikov S.N., Nikolaevskii S. A. et al. // J. Struct. Chem. 2021. V. 62. № 9. P. 1378. https://doi.org/10.1134/S0022476621090067
- Sidorov A.A., Gogoleva N. V., Bazhina E. S. et al. // Pure Appl. Chem. 2020. V. 92. № 7. P. 1093. https://doi.org/10.1515/pac-2019-1212
- Gorbunova Y.G., Fedin V. P., Blatov V. A. // Russ. Chem. Rev. 2022. V. 91. № 4. https://doi.org/10.1070/RCR5050
- Cui G.-H., He C.-H., Jiao C.-H. et al. // CrystEngComm. 2012. V. 14. № 12. P. 4210. https://doi.org/10.1039/c2ce25264c
- Hu J.-M., Blatov V. A., Yu B. et al. // Dalton Trans. 2016. V. 45. № 6. P. 2426. https://doi.org/10.1039/c5dt04679c
- Sapianik A.A., Dudko E. R., Kovalenko K. A. et al. // ACS Appl. Mater. Interfaces. 2021. V. 13. № 12. P. 14768. https://doi.org/10.1021/acsami.1c02812
- Sapianik A.A., Kovalenko K. A., Samsonenko D. G. et al. // Chem. Commun. 2020. V. 56. № 59. P. 8241. https://doi.org/10.1039/d0cc03227a
- Lysova A.A., Samsonenko D. G., Kovalenko K. A. et al. // Angew. Chem. Int. Ed. 2020. V. 59. № 46. P. 20561. https://doi.org/10.1002/anie.202008132
- Maponya T.C., Modibane K. D., Somo T. R. et al. // Sep. Purif. Technol. 2023. V. 307. https://doi.org/10.1016/j.seppur.2022.122767
- Maponya T.C., Makgopa K., Somo T. R. et al. // Environ. Nanotechnol. Monit. Manag. 2023. V. 20. https://doi.org/10.1016/j.enmm.2023.100805
- Mansoorianfar M., Nabipour H., Pahlevani F. et al. // Environ. Res. 2022. V. 214. https://doi.org/10.1016/j.envres.2022.114113
- Mahmoud M.E., Elsayed S. M., Mahmoud S. E.M.E. et al. // Polyhedron. 2022. V. 226. https://doi.org/10.1016/j.poly.2022.116082
- Liu K.-G., Bigdeli F., Sharifzadeh Z. et al. // J. Clean. Prod. 2023. V. 404. https://doi.org/10.1016/j.jclepro.2023.136709
- Zhou D.-D., Liu Q.-Y., Chen M. et al. // J. Environ. Chem. Eng. 2023. V. 11. № 3. https://doi.org/10.1016/j.jece.2023.109666
- Norouzi F., Khavasi H. R. // New J. Chem. 2020. V. 44. № 21. P. 8937. https://doi.org/10.1039/d0nj01149e
- Zhang Y., Yuan S., Day G. et al. // Coord. Chem. Rev. 2018. V. 354. P. 28. https://doi.org/10.1016/j.ccr.2017.06.007
- Zhang H., Wang Z.-X., Luo Y.-H. et al. // Polyhedron. 2022. V. 224. https://doi.org/10.1016/j.poly.2022.116016
- Yousefi R., Asgari S., Banitalebi Dehkordi A. et al. // Environ. Res. 2023. V. 226. https://doi.org/10.1016/j.envres.2023.115664
- Zorina-Tikhonova E.N., Yambulatov D. S., Kiskin M. A. et al. // Russ. J. Coord. Chem. 2020. V. 46. № 2. P. 75. https://doi.org/10.1134/S1070328420020104
- Kolokolov F.A., Kulyasov A. N., Magomadova M. A. et al. // Russ. J. Gen. Chem. 2016. V. 86. № 5. P. 1209. https://doi.org/10.1134/S1070363216050418
- Eliseeva A.A., Ivanov D. M., Novikov A. S. et al. // CrystEngComm 2019. V. 21. № 4. P. 616. https://doi.org/10.1039/c8ce01851k
- Eliseeva A.A., Ivanov D. M., Novikov A. S. et al. // Dalton Trans. 2020. V. 49. № 2. P. 356. https://doi.org/10.1039/c9dt04221k
- Aliyarova I.S., Tupikina E. Y., Soldatova N. S. et al. // Inorg. Chem. 2022. V. 61. № 39. P. 15398. https://doi.org/10.1021/acs.inorgchem.2c01858
- Soldatova N.S., Suslonov V. V., Kissler T. Y. et al. // Crystals. 2020. V. 10. № 3. https://doi.org/10.3390/cryst10030230
- Soldatova N.S., Postnikov P. S., Suslonov V. V. et al. // Org. Chem. Front. 2020. V. 7. № 16. P. 2230. https://doi.org/10.1039/d0qo00678e
- Aliyarova I.S., Ivanov D. M., Soldatova N. S. et al. // Cryst. Growth Des. 2021. V. 21. № 2. P. 1136. https://doi.org/10.1021/acs.cgd.0c01463
- Kalaj M., Momeni M. R., Bentz K. C. et al. // Chem. Commun. 2019. V. 55. № 24. P. 3481. https://doi.org/10.1039/C9CC00642G
- Li B., Dong M.-M., Fan H.-T. et al. // Cryst. Growth Des. 2014. V. 14. № 12. P. 6325. https://doi.org/10.1021/cg501073e
- Novikov A.S., Sakhapov I. F., Zaguzin A. S. et al. // J. Struct. Chem. 2022. V. 63. № 11. P. 1880. https://doi.org/10.1134/S002247662211018X
- Lee D.A., Peloquin D. M., Yapi E. W. et al. // Polyhedron. 2017. V. 133. P. 358. https://doi.org/10.1016/j.poly.2017.05.040
- Richard J., Joseph J., Wang C. et al. // J. Org. Chem. 2021. V. 86. № 4. P. 3356. https://doi.org/10.1021/acs.joc.0c02708
- Aubert E., Abboud M., Doudouh A. et al. // RSC Adv. 2017. V. 7. № 12. P. 7358. https://doi.org/10.1039/c6ra28197d
- Abboud M., Mamane V., Aubert E. et al. // J. Org. Chem. 2010. V. 75. № 10. P. 3224. https://doi.org/10.1021/jo100152e
- Sheldrick G.M. // Acta Crystallogr. A. 2015. V. 71. № 1. P. 3. https://doi.org/10.1107/S2053273314026370
- Sheldrick G.M., IUCr // Acta Crystallogr. C. 2015. V. 71. № 1. P. 3. https://doi.org/10.1107/S2053229614024218
- Bondi A. // J. Phys. Chem. 1966. V. 70. № 9. P. 3006. https://doi.org/10.1021/j100881a503
- Mantina M., Chamberlin A. C., Valero R. et al. // J. Phys. Chem. A. 2009. V. 113. № 19. P. 5806. https://doi.org/10.1021/jp8111556
- Gong Y., Zhang M. M., Zhang P. et al. // CrystEngComm 2014. V. 16. № 42. P. 9882. https://doi.org/10.1039/c4ce01506a
- Ju Z., Yan W., Gao X. et al. // Cryst. Growth Des. 2016. V. 16. № 5. P. 2496. https://doi.org/10.1021/acs.cgd.5b00681
Supplementary files
