Heteroleptic Zn(II) Halide Complexes with Iodine-Substituted Benzonitriles: Peculiarities of the Halogen Bond in the Solid State

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

The reactions of zinc(II) bromide with 3- and 4-iodobenzonitriles (3-I-BzCN and 4-I-Bz-CN) afford heteroligand complexes [L2ZnBr2] (L = 3-I-BzCN (I) and 4-I-BzCN (II)), whose structures are determined by X-ray diffraction (XRD) (CIF files CCDC nos. 2253175 (I) and 2253176 (II)). Both crystal structures contain halogen bonds I···Br linking the [ZnBr2L2] fragments into supramolecular layers (I) or chains (II). The energies of these noncovalent interactions are estimated by quantum-chemical calculations.

About the authors

M. A. Vershinin

Nikolaev Institute of Inorganic Chemistry, Siberian Branch

Email: adonin@niic.nsc.ru
Russian Federation, Novosibirsk

A. S. Novikov

St. Petersburg State University

Email: adonin@niic.nsc.ru
Russian Federation, St. Petersburg

M. N. Sokolov

Nikolaev Institute of Inorganic Chemistry, Siberian Branch

Email: adonin@niic.nsc.ru
Russian Federation, Novosibirsk

S. A. Adonin

Nikolaev Institute of Inorganic Chemistry, Siberian Branch

Author for correspondence.
Email: adonin@niic.nsc.ru
Russian Federation, Novosibirsk

References

  1. Desiraju G.R., Ho P. S., Kloo L. et al. // Pure Appl. Chem. 2013. V. 85. № 8. P. 1711. https://doi.org/10.1351/PAC-REC-12–05–10
  2. Bartashevich E.V., Sobalev S. A., Matveychuk Y. V. et al. // J. Struct. Chem. 2021. V. 62. № 10. P. 1607. https://doi.org/10.1134/S0022476621100164
  3. Novikov A.S., Gushchin A. L. // J. Struct. Chem. 2021. V. 62. № 9. P. 1325. https://doi.org/10.1134/S0022476621090018
  4. Matveychuk Y.V., Ilkaeva M. V., Vershinina E. A. et al. // J. Mol. Struct. 2016. V. 1119. P. 227. https://doi.org/10.1016/j.molstruc.2016.04.072
  5. Bartashevich E.V., Grigoreva E. A., Yushina I. D. et al. // Russ. Chem. Bull. 2017. V. 66. № 8. P. 1345. https://doi.org/10.1007/s11172–017–1898–1
  6. Bol’shakov O.I., Yushina I. D., Stash A. I. et al. // Struct. Chem. 2020. V. 31. № 5. P. 1729. https://doi.org/10.1007/s11224-020-01584-y
  7. Bartashevich E.V., Stash A. I., Batalov V. I. et al. // Struct. Chem. 2016. V. 27. № 5. P. 1553. https://doi.org/10.1007/s11224-016-0785-y
  8. Bartashevich E.V., Pendás Á. M., Tsirelson V. G. // Phys. Chem. Chem. Phys. 2014. V. 16. № 31. P. 16780. https://doi.org/10.1039/c4cp01257g
  9. Kolář M.H., Hobza P. // Chem. Rev. 2016. V. 116. № 9. P. 5155. https://doi.org/10.1021/acs.chemrev.5b00560
  10. Metrangolo P., Neukirch H., Pilati T. et al. // Acc. Chem. Res. 2005. V. 38. № 5. P. 386. https://doi.org/10.1021/ar0400995
  11. Katlenok E.A., Haukka M., Levin O. V. et al. // Chem. Eur. J. 2020. V. 26. № 34. P. 7692. https://doi.org/10.1002/chem.202001196
  12. Torubaev Y.V., Skabitsky I. V. // CrystEngComm. 2020. V. 22. № 40. P. 6661. https://doi.org/10.1039/d0ce01093f
  13. Rozhkov A.V., Novikov A. S., Ivanov D. M. et al. // Cryst. Growth Des. 2018. V. 18. № 6. P. 3626. https://doi.org/10.1021/acs.cgd.8b00408
  14. Kryukova M.A., Sapegin A. V., Novikov A. S. et al. // Crystals. 2020. V. 10. № 5. https://doi.org/10.3390/cryst10050371
  15. Eliseeva A.A., Ivanov D. M., Novikov A. S. et al. // CrystEngComm. 2019. V. 21. № 4. P. 616. https://doi.org/10.1039/c8ce01851k
  16. Bokach N.A., Suslonov V. V., Eliseeva A. A. et al. // CrystEngComm. 2020. V. 22. № 24. P. 4180. https://doi.org/10.1039/c6ra90077a
  17. Eliseeva A.A., Ivanov D. M., Rozhkov A. V. et al. // J. Am. Chem. Soc. 2021. V. 1. № 3. P. 354. https://doi.org/10.1021/jacsau.1c00012
  18. Zelenkov L.E., Ivanov D. M., Avdontceva M. S. et al. // Z. Krist. Cryst. Mater. 2019. V. 234. № 1. P. 9. https://doi.org/10.1515/zkri-2018–2111
  19. Novikov A.S., Ivanov D. M., Avdontceva M. S. et al. // CrystEngComm. 2017. V. 19. № 18. P. 2517. https://doi.org/10.1039/C7CE00346C
  20. Cheranyova A.M., Ivanov D. M. // Crystals. 2021. V. 11. № 7. https://doi.org/10.3390/cryst11070835
  21. Torubaev Y.V., Skabitskiy I. V., Pavlova A. V. et al. // New J. Chem. 2017. V. 41. № 9. P. 3606. https://doi.org/10.1039/C6NJ04096A
  22. Shestimerova T.A., Yelavik N. A., Mironov A. V. et al. // Inorg. Chem. 2018. V. 57. № 7. P. 4077. https://doi.org/10.1021/acs.inorgchem.8b00265
  23. Eich A., Köppe R., Roesky P. W. et al. // Eur. J. Inorg. Chem. 2019. V. 2019. № 9. P. 1292. https://doi.org/10.1002/ejic.201900018
  24. Bykov A.V., Shestimerova T. A., Bykov M. A. et al. // Int. J. Mol. Sci. 2023. V. 24. № 3. P. 2201. https://doi.org/10.3390/ijms24032201
  25. Shestimerova T.A., Golubev N. A., Yelavik N. A. et al. // Cryst. Growth Des. 2018. V. 18. № 4. P. 2572. https://doi.org/10.1021/acs.cgd.8b00179
  26. Suslonov V.V., Soldatova N. S., Ivanov D. M. et al. // Cryst. Growth Des. 2021. V. 21. № 9. P. 5360. https://doi.org/10.1021/acs.cgd.1c00654
  27. Soldatova N.S., Suslonov V. V., Kissler T. Y. et al. // Crystals. 2020. V. 10. № 3. https://doi.org/10.3390/cryst10030230
  28. Aliyarova I.S., Ivanov D. M., Soldatova N. S. et al. // Cryst. Growth Des. 2021. V. 21. № 2. P. 1136. https://doi.org/10.1021/acs.cgd.0c01463
  29. Soldatova N.S., Postnikov P. S., Suslonov V. V. et al. // Org. Chem. Front. 2020. V. 7. № 16. P. 2230. https://doi.org/10.1039/d0qo00678e
  30. Hu C., Li Q., Englert U. // CrystEngComm. 2003. V. 5. № 94. P. 519. https://doi.org/10.1039/b314522k
  31. Wang A., Englert U., IUCr // Acta Crystallogr. C. 2017. V. 73. № 10. P. 803. https://doi.org/10.1107/S2053229617013201
  32. Hu C., Kalf I., Englert U. // CrystEngComm. 2007. V. 9. № 7. P. 603. https://doi.org/10.1039/b701907f
  33. Zordan F., Brammer L. // Cryst. Growth Des. 2006. V. 6. № 6. P. 1374. https://doi.org/10.1021/cg050670m
  34. Awwadi F.F., Alwahsh M. I., Turnbull M. M. et al. // Dalton Trans. 2021. V. 50. № 12. P. 4167. https://doi.org/10.1039/d0dt04071a
  35. Puttreddy R., von Essen C., Rissanen K. // Eur. J. Inorg. Chem. 2018. V. 2018. № 20–21. P. 2393. https://doi.org/10.1002/ejic.201800144
  36. Puttreddy R., von Essen C., Peuronen A. et al. // CrystEngComm. 2018. V. 20. № 14. P. 1954. https://doi.org/10.1039/C8CE00209F
  37. Awwadi F.F., Turnbull M. M., Alwahsh M. I. et al. // New J. Chem. 2018. V. 42. № 13. P. 10642. https://doi.org/10.1039/C8NJ00422F
  38. Qian W., Yuan H.-K., Zhang R. et al. // J. Coord. Chem. 2016. V. 69. № 23. P. 3593. https://doi.org/10.1080/00958972.2016.1242727
  39. Zisti F., Tehrani A. A., Alizadeh R. et al. // J. Solid State Chem. 2019. V. 271. P. 29. https://doi.org/10.1016/j.jssc.2018.12.049
  40. Tehrani A.A., Abedi S., Morsali A. // Cryst. Growth Des. 2017. V. 17. № 1. P. 255. https://doi.org/10.1021/acs.cgd.6b01518
  41. Kryukova M.A., Ivanov D. M., Kinzhalov M. A. et al. // Chem. Eur. J. 2019. V. 25. № 60. P. 13671. https://doi.org/10.1002/chem.201902264
  42. Demakova M.Y., Bolotin D. S., Bokach N. A. et al. // Chempluschem. 2015. V. 80. № 11. P. 1607. https://doi.org/10.1002/cplu.201500327
  43. Fischer M., Wolff M. C., Del Horno E. et al. // Organometallics. 2020. V. 39. № 17. P. 3232. https://doi.org/10.1021/acs.organomet.0c00452
  44. Ramón R.S., Gaillard S., Poater A. et al. // Chem. Eur. J. 2011. V. 17. № 4. P. 1238. https://doi.org/10.1002/chem.201002607
  45. George A.V., Field L. D., Malouf E. Y. et al. // J. Organomet. Chem. 1997. V. 538. № 1–2. P. 101. https://doi.org/10.1016/S0022-328X(96)06912-4
  46. Sheldrick G.M. // Acta Crystallogr. A. 2015. V. 71. № 1. P. 3. https://doi.org/10.1107/S2053273314026370
  47. Sheldrick G.M. // Acta Crystallogr. C. 2015. V. 71. № 1. P. 3. https://doi.org/10.1107/S2053229614024218
  48. Hübschle C.B., Sheldrick G. M., Dittrich B. // J. Appl. Crystallogr. 2011. V. 44. № 6. P. 1281. https://doi.org/10.1107/S0021889811043202
  49. Çelik Ö., Ide S., Kurt M. et al. // Acta Crystallogr. E. 2004. V. 60. № 4. P. M424. https://doi.org/10.1107/S1600536804004908
  50. Şahin E., Ide S., Ataç A. et al. // J. Mol. Struct. 2002. V. 616. № 1–3. P. 253. https://doi.org/10.1016/S0022-2860(02)00346-0
  51. Smirnov A.S., Butukhanova E. S., Bokach N. A. et al. // Dalton Trans. 2014. V. 43. № 42. P. 15798. https://doi.org/10.1039/c4dt01812e
  52. Bondi A. // J. Phys. Chem. 1966. V. 70. № 9. P. 3006. https://doi.org/10.1021/j100881a503
  53. Mantina M., Chamberlin A. C., Valero R. et al. // J. Phys. Chem. A. 2009. V. 113. № 19. P. 5806. https://doi.org/10.1021/jp8111556
  54. Cavallo G., Metrangolo P., Milani R. et al. // Chem. Rev. 2016. V. 116. № 4. P. 2478. https://doi.org/10.1021/acs.chemrev.5b00484
  55. Chai J.-D., Head-Gordon M. // Phys. Chem. Chem. Phys. 2008. V. 10. № 44. P. 6615. https://doi.org/10.1039/b810189b
  56. Barros C.L., de Oliveira P. J.P., Jorge F. E. et al. // Mol. Phys. 2010. V. 108. № 15. P. 1965. https://doi.org/10.1080/00268976.2010.499377
  57. Jorge F.E., Canal Neto A., Camiletti G. G. et al. // J. Chem. Phys. 2009. V. 130. № 6. P. 064108. https://doi.org/10.1063/1.3072360
  58. Bader R.F.W. // Chem. Rev. 1991. V. 91. № 5. P. 893. https://doi.org/10.1021/cr00005a013
  59. Lu T., Chen F. // J. Comput. Chem. 2012. V. 33. № 5. P. 580. https://doi.org/10.1002/jcc.22885
  60. Bikbaeva Z.M., Novikov A. S., Suslonov V. V. et al. // Dalton Trans. 2017. V. 46. № 30. P. 10090. https://doi.org/10.1039/c7dt01960b
  61. Kolari K., Sahamies J., Kalenius E. et al. // Solid State Sci. 2016. V. 60. P. 92. https://doi.org/10.1016/j.solidstatesciences.2016.08.005
  62. Melekhova A.A., Novikov A. S., Panikorovskii T. L. et al. // New J. Chem. 2017. V. 41. № 23. P. 14557. https://doi.org/10.1039/c7nj02798b
  63. Novikov A.S., Kuznetsov M. L. // Inorg. Chim. Acta. 2012. V. 380. № 1. P. 78. https://doi.org/10.1016/j.ica.2011.08.016
  64. Johnson E.R., Keinan S., Mori-Sánchez P. et al. // J. Am. Chem. Soc. 2010. V. 132. № 18. P. 6498. https://doi.org/10.1021/ja100936w
  65. Bartashevich E.V., Tsirelson V. G. // Russ. Chem. Rev. 2014. V. 83. № 12. P. 1181. https://doi.org/10.1070/RCR4440

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2024 Российская академия наук