Delayed Drug Release Films Based on MIL-100(Fe) Metal-Organic Framework

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

Biocompatible metal-organic framework MIL-100(Fe) was used as a container for a model hydrophobic active pharmaceutical ingredient, ibuprofen, in composite films based on gelatin, pectin, and kappacarrageenan. According to powder X-ray diffraction and scanning electron microscopy data, the metal-organic framework retained the crystal structure and its particles were uniformly distributed throughout the hydrocolloid matrix. Testing of the obtained film materials under simulated biological conditions using chromatography – mass spectrometry analysis showed that they are applicable as a dosage form for slow release of active pharmaceutical ingredients.

About the authors

A. M. Pak

Nesmeyanov Institute of Organic Element Compounds, Russian Academy of Sciences; Moscow Institute of Physics and Technology (National Research University)

Email: novikov84@gmail.com
Russian Federation, Moscow; Moscow

T. N. Volkhina

Mendeleev University of Chemical Technology of Russia

Email: novikov84@gmail.com
Russian Federation, Moscow

Yu. V. Nelyubina

Nesmeyanov Institute of Organic Element Compounds, Russian Academy of Sciences; Moscow Institute of Physics and Technology (National Research University)

Email: novikov84@gmail.com
Russian Federation, Moscow; Moscow

V. V. Novikov

Moscow Institute of Physics and Technology (National Research University)

Author for correspondence.
Email: novikov84@gmail.com
Russian Federation, Moscow

References

  1. Abebe A., Akseli I., Sprockel O. et al. // Int. J. Pharm. 2014. V. 461. № 1. P. 549.
  2. Roshan K., Keerthy H. S. // Asian J. Pharm. Res. Dev. 2021. V 9. № 3. P. 66.
  3. Markovic M.D., Panic V. V., Seslija S. I. et al. // Polym. Eng. Sci. 2020. V. 60. № 8. P. 2008.
  4. Mathieu D., Linke J.-C., Wattel F. // Handbook on Hyperbaric Medicine / Еd. Mathieu D. Dordrecht: Springer Netherlands, 2006. P. 401.
  5. Kadajji V.G., Betageri G. V. // Polymers. 2011. V. 3. № 4. P. 1972.
  6. Zhao J., Wei F., Xu W. et al. // Appl. Surf. Sci. 2020. V. 510. P. 145418.
  7. Пак А.М., Захарченко Е. Н., Корлюков А. А. et al. // Коор. химия. 2022. V. 48. № 4. P. 200.
  8. Pak A.M., Zakharchenko E. N., Korlyukov A. A. et al. // Russ. J. Coord. Chem. 2022. V. 48. № 4. P. 195.
  9. Kirchon A., Feng L., Drake H. F. et al. // Chem. Soc. Rev. The Royal Society of Chemistry. 2018. V. 47. № 23. P. 8611.
  10. Chen L., Zhang X., Cheng X. et al. // Nanoscale Adv. RSC. 2020. V. 2. № 7. P. 2628.
  11. Shekhah O., Liu J., Fischer R. A. et al. // Chem. Soc. Rev. The Royal Society of Chemistry. 2011. V. 40. № 2. P. 1081.
  12. Gangu K.K., Maddila S., Mukkamala S. B. et al. // Inorganica Chim. Acta. 2016. V. 446. P. 61.
  13. Quijia C.R., Lima C., Silva C. et al. // J. Drug Deliv. Sci. Technol. 2021. V. 61. P. 102217.
  14. Canioni R., Roch-Marchal C., Sécheresse F. et al. // J. Mater. Chem. 2011. V. 21. № 4. P. 1226.
  15. Zhong G., Liu D., Zhang J. // Cryst. Growth Des. 2018. V. 18. № 12. P. 7730.
  16. Guesh K., Caiuby C. A.D., Mayoral Á. et al. // Cryst. Growth Des. 2017. V. 17. № 4. P. 1806.
  17. Farris S., Schaich K. M., Liu L. et al. // Food Hydrocoll.

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2024 Российская академия наук