Synthesis and Structure of the (µ2-OP(O)Ph2)-Linked Dimeric Amide Lanthanum Complex {[ CP(O)Ph2]La[N(SiMe3)2](µ2-OP(O)Ph2)}2 Bearing the Tridentate Heteroscorpionate Ligand. Investigation of the Catalytic Activity in rac-Lactide and ε-Caprolactone Polymerization
- Authors: Rad’kova N.Y.1, Cherkasov A.V.1, Trifonov A.A.1,2
-
Affiliations:
- Razuvaev Institute of Organometallic Chemistry, Russian Academy of Sciences, Nizhny Novgorod, Russia
- Nesmeyanov Institute of Organoelement Compounds, Russian Academy of Sciences, Moscow, Russia
- Issue: Vol 49, No 11 (2023)
- Pages: 685-692
- Section: Articles
- URL: https://rjonco.com/0132-344X/article/view/667642
- DOI: https://doi.org/10.31857/S0132344X23600273
- EDN: https://elibrary.ru/WOGTMD
- ID: 667642
Cite item
Abstract
The dimeric amide lanthanum complex {[CP(O)Ph2]La[N(SiMe3)2](µ2-OP(O)Ph2)}2 (PzlMe2 is 3,5-dimethylpyrazole) bearing the N,N,O-tridentate heteroscorpionate ligand is synthesized. As found by X-ray diffraction (XRD) (CIF file CCDC no. 2212274), the complex is binuclear and its lanthanum ions are linked by two bridging monoanionic diphenyl phosphinate ligands. The synthesized lanthanum complex demonstrates a high catalytic activity in the polymerization with ring opening of rac-lactide and ε-caprolactone providing the quantitative conversion of 500 equivalents of the monomer to the polymer at room temperature within 360–720 min for rac-lactide and 10–30 min for ε-caprolactone. The formed polylactides are characterized by the atactic microstructure (Pr = 0.54–0.56) and polydispersity indices (PDI) of 1.6–2.5, whereas for polycaprolactone PDI = 2.1–2.8.
About the authors
N. Yu. Rad’kova
Razuvaev Institute of Organometallic Chemistry, Russian Academy of Sciences, Nizhny Novgorod, Russia
Email: trif@iomc.ras.ru
Россия, Нижний Новгород
A. V. Cherkasov
Razuvaev Institute of Organometallic Chemistry, Russian Academy of Sciences, Nizhny Novgorod, Russia
Email: trif@iomc.ras.ru
Россия, Нижний Новгород
A. A. Trifonov
Razuvaev Institute of Organometallic Chemistry, Russian Academy of Sciences, Nizhny Novgorod, Russia; Nesmeyanov Institute of Organoelement Compounds, Russian Academy of Sciences, Moscow, Russia
Author for correspondence.
Email: trif@iomc.ras.ru
Россия, Нижний Новгород; Россия, Москва
References
- Hou Z., Nishiura M. // Nat. Chem. 2010. V. 2. P. 257. https://doi.org/10.1038/nchem.595
- Trifonov A.A., Lyubov D.M. // Coord. Chem. Rev. 2017. V. 340. P. 10. https://doi.org/10.1016/j.ccr.2016.09.013
- Carpentier J.-F., Gromada J., Mortreux A. // Coord. Chem. Rev. 2004. V. 248. P. 397. https://doi.org/10.1016/j.ccr.2004.02.002
- Friebe O.N., Obrecht W., Zimmermann M. // Adv. Polym. Sci. 2006, V. 204. P. 1. https://doi.org/10.1007/12_094
- Anwander R., Törnroos K.W., Zimmermann M. // Angew. Chem. Int. Ed. 2008. V. 47. P. 775. https://doi.org/10.1002/anie.200703514
- Cui D., Liu B., Wang B. et al. // Struct. Bond. 2010. V. 137. P. 49. https://doi.org/10.1007/430.2010.16
- Cotton S.A. // Coord. Chem. Rev. 1997. V. 160. P. 93. https://doi.org/10.1016/S0010-8545(96)01340-9
- Lyubov D.M., Tolpygin A.O., Trifonov A.A. // Coord. Chem. Rev. 2019. V. 392. P. 83. https://doi.org/10.1016/j.ccr.2019.04.013
- Aubrecht K.B., Chang K., Hillmyer M.A., Tolman W.B. // J. Polym. Sci. A. 2001. V. 39. P. 284. https://doi.org/10.1002/1099-0518(20010115)39
- Tolpygin A.O., Linnikova O.A., Glukhova T.A. et al. // RSC Adv. 2016. V. 6. P. 17913. https://doi.org/10.1039/C5RA27960G
- Nakayama Y., Yasuda H. // J. Organomet. Chem. 2004. V. 689. P. 4489. https://doi.org/10.1016/j.jorganchem.2004.05.056
- Piers W.E., Emslie D.J.H. // Coord. Chem. Rev. 2002. V. 233–234. P. 131. https://doi.org/10.1016/S0010-8545(02)00016-4
- Howe R.G., Tredget C.S., Lawrence S.C. et al. // Chem. Commun. 2006. P. 223. https://doi.org/10.1039/B513927A
- Zeimentz P.M., Arndt S., Elvidge B.R., Okuda J. // Chem. Rev. 2006. V. 106. P. 2404. https://doi.org/10.1021/cr050574s
- Hou Z., Luo Y., Li X. // J. Organomet. Chem. 2006. V. 691. P. 3114. https://doi.org/10.1016/j.jorganchem.2006.01.055
- Molander G.A., Romero J.A.C. // Chem. Rev. 2002. V. 102. P. 2161. https://doi.org/10.1021/cr010291+
- Trifonov A.A., Basalov I.V., Kissel A.A. // Dalton Trans. 2016. V. 45. P. 19172. https://doi.org/10.1039/C6DT03913H
- Kissel A.A., Lyubov D.M., Mahrova T.V. et al. // Dalton Trans. 2013. V. 42. P. 9211. https://doi.org/10.1039/C3DT33108C
- Khristolyubov D.O., Lyubov D.M., Trifonov A.A. // Russ. Chem. Rev. 2021. V. 90. P. 529. https://doi.org/10.1070/RCR4992
- Shannon R.D. // Acta Crystallogr. A. 1976. V. 32. P. 751. https://doi.org/10.1107/S0567739476001551
- Jia Y.Q. // J. Solid State Chem. 1991. V. 95. P. 184. https://doi.org/10.1016/0022-4596(91)90388-x
- Morss L.R. // Chem. Rev. 1976. V. 76. P. 827. https://doi.org/10.1021/cr60304a007
- Trifonov A.A. // Coord. Chem. Rev. 2010. V. 254. P. 1327. https://doi.org/10.1016/j.ccr.2010.01.008
- Otero A., Lara-Sanchez A., Castro-Osma J.A. et al. // New J. Chem. 2015. V. 39. P. 7672. https://doi.org/10.1039/C5NJ00930H
- Bochkarev M.N., Zakharov L.N., Kalinina G.S. // Top Organomet. Chem. 1999. P. 285.
- Barker J., Kilner M. // Coord. Chem. Rev. 1994. V. 133. P. 219. https://doi.org/10.1016/0010-8545(94)80059-6
- Trifonov A.A. // Russ. Chem. Rev. 2007. V. 76. P. 1051. https://doi.org/10.1070/RC2007v076n11ABEH003693
- Yap G.P.A. // Acta Crystallogr. C. 2013. V. 69. P. 937. https://doi.org/10.1107/S0108270113019902
- Trofimenko S. Scorpionates: The Coordination Chemistry of Polypyrazolylborate Ligands, London: Imperial College Press, 1998.
- Reger D.L. // Comments Inorg. Chem. 1999. V. 21. P. 1. https://doi.org/10.1080/02603599908020413
- Otero A., Fernandez-Baeza J., Antinolo A. et al. // Dalton Trans. 2004. P. 1499. https://doi.org/10.1039/B401425A
- Pettinari C., Pettinari R. // Coord. Chem. Rev. 2005. V. 249. P. 525. https://doi.org/10.1016/j.ccr.2004.05.010
- Mou Z., Liu B., Liu X. et al. // Macromolecules. 2014. V. 47. P. 2233. https://doi.org/10.1021/ma500209t
- Ballard D.G.H., Coutis A., Holton J. et al. // Chem. Commun. 1978. P. 994. https://doi.org/10.1039/C39780000994
- Burger B.J., Thompson M.E., Cotter W.D., Bercaw J.E. // J. Am. Chem. Soc. 1990. V. 112. P. 1566. https://doi.org/10.1021/ja00160a041
- Hou Z., Zhang Y., Nishiura M., Wakatsuki Y. // Organometallics. 2003. V. 22. P. 129. https://doi.org/10.1021/om020742w
- Li X., Hou Z. // Macromolecules. 2005. V. 38. P. 6767. https://doi.org/10.1021/ma051323o
- Otero A., Lara-Sánchez A., Nájera C. et al. // Organometallics. 2012. V. 31. P. 2244. https://doi.org/10.1021/om2011672
- Pettinari C., Pettinari R. // Coord. Chem. Rev. 2005. V. 249. P. 663. https://doi.org/10.1016/j.ccr.2004.08.017
- Otero A., Fernández-Baeza J., Antinolo A. et al. // J. Am. Chem. Soc. 2004. V. 126. P. 1330. https://doi.org/10.1021/ja0391558
- Schädle D., Maichle-Mössmer C., Schädle C., Anwander R. // Chem. Eur. J. 2014. V. 21. P. 662. https://doi.org/10.1002/chem.201404792
- Marques N., Sella A., Takats J. // Chem. Rev. 2002. V. 102. P. 2137. https://doi.org/10.1021/cr010327y
- Trofimenko S. // Polyhedron. 2004. V. 23. P. 197. https://doi.org/10.1016/j.poly.2003.11.013
- Bigmore H.R., Lawrence S.C., Mountford P., Tredget C.S. // Dalton Trans. 2005. P. 635. https://doi.org/10.1039/B413121E
- Gibson V.C., Spitzmesser S.K. // Chem. Rev. 2003. V. 103. P. 283. https://doi.org/10.1021/cr980461r
- Martínez J., Otero A., Lara-Sánchez A. et al. // Organometallics. 2016. V. 35. P. 1802. https://doi.org/10.1021/acs.organomet.6b00203
- Bradley D.C., Ghotra J.S., Hart F.A. // Dalton Trans. 1973. V. 10. P. 1021. https://doi.org/10.1039/DT9730001021
- Barakat I., Dubois P., Jerome R., Teyssie P. // J. Polym. Sci. A. 1993. V. 31. P. 505. https://doi.org/10.1002/pola.1993.080310222
- APEX3. Madison (WI, USA): Bruker AXS Inc., 2018.
- Krause L., Herbst-Irmer R., Sheldrick G.M., Stalke D. // J. Appl. Cryst. 2015. V. 48. P. 3. https://doi.org/10.1107/S1600576714022985
- Sheldrick G. // Acta Crystallogr. C. 2015. V. 71. P. 3. https://doi.org/10.1107/S2053229614024218
- Krieck S., Koch A., Hinze K. et al. // Eur. J. Inorg. Chem. 2016. P. 2332. https://doi.org/10.1002/ejic.201501263
- Wingerter S., Pfeiffer M., Baier F. et al. // Z. Anorg. Allg. Chem. 2000. V. 626. P. 1121. https://doi.org/10.1002/(SICI)1521-3749(200005)626:5 <1121::AID-ZAAC1121>3.0.CO;2-I
- Beswick M.A., Cromhout N.L., Harmer C.N. et al. // Chem. Commun. 1997. P. 583. https://doi.org/10.1039/A608202E
- Al-Shboul T.M.A., Volland G., Görls H. et al. // Inorg. Chem. 2012. V. 51. P. 7903. https://doi.org/10.1021/ic300975s
- Zhang Z., Xu X., Li W. et al. // Inorg. Chem. 2009. V. 48. P. 5715. https://doi.org/10.1021/ic802177y
- Litlabø R., Zimmermann M., Saliu K. et al. // Angew. Chem. Int. Ed. 2008. V. 47. P. 9560. https://doi.org/10.1002/anie.200803856
- Dong X., Robinson J.R. // Chem. Sci. 2020. V. 11. P. 8184. https://doi.org/10.1039/D0SC03507F
- Sugiyama H., Korobkov I., Gambarotta S. // Inorg. Chem. 2004. V. 43. P. 5771. https://doi.org/10.1021/ic049820t
- Gu X.-Y., Han X.-Z., Yao Y.-M. et al. // J. Organomet. Chem. 2010. V. 695. P. 2726. https://doi.org/10.1016/j.jorganchem.2010.07.037
- Zhang J., Qiu J., Yao Y. et al. // Organometallics. 2012. V. 31. P. 3138. https://doi.org/10.1021/om300036a
