The tetranuclear macrocyclic mercury(II) complex of [Hg4{S2CN(CH3)2}4Cl4]: preparation, molecular and supramolecular structures, and thermal behavior

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

The tetranuclear mercury(II) dithiocarbamato-chlorido complex [Hg4(S2CNMe2)4Cl4] (I), the molecule of which includes a centrosymmetric 16-membered metallacycle [Hg4S8C4], was prepared by the reaction of solutions of HgCl2 and sodium dimethyldithiocarbamate (Me2Dtc). The crystal, molecular, and supramolecular structures of I were established by direct single crystal X-ray diffraction (CCDC no. 2364847). In complex I, the non-equivalent μ2-bridging dithiocarbamate ligands join neighboring mercury atoms in pairs, thus forming a tetranuclear macrocyclic molecule. The intramolecular Hg···S and Hg···Cl secondary bonds stabilize the spatial configuration of this macrometallacycle. The supramolecular self-organization of the complex is due to the relatively weak, pairwise S···Cl and Hg···Cl secondary interactions, which combine the tetranuclear molecules of I into 2D pseudo-polymer layers; numerous non-classical C–H···Cl and C–H···S hydrogen bonds connect these layers to form a 3D framework. According to simultaneous thermal analysis data, the thermal decomposition of I is accompanied by the formation of HgS and release of HgCl2.

Full Text

Restricted Access

About the authors

O. V. Loseva

Institute of Geology and Nature Management, Far Eastern Branch, Russian Academy of Sciences

Email: alexander.v.ivanov@chemist.com
Russian Federation, Blagoveshchensk, 675000

T. A. Rodina

Amur State University

Email: alexander.v.ivanov@chemist.com
Russian Federation, Blagoveshchensk, 675027

A. I. Smolentsev

Nikolaev Institute of Inorganic Chemistry, Siberian Branch, Russian Academy of Sciences

Email: alexander.v.ivanov@chemist.com
Russian Federation, Novosibirsk, 630090

S. V. Zinchenko

Favorsky Irkutsk Institute of Chemistry, Siberian Branch, Russian Academy of Sciences

Email: alexander.v.ivanov@chemist.com
Russian Federation, Irkutsk, 664033

A. V. Ivanov

Institute of Geology and Nature Management, Far Eastern Branch, Russian Academy of Sciences

Author for correspondence.
Email: alexander.v.ivanov@chemist.com
Russian Federation, Blagoveshchensk, 675000

References

  1. Cho M., Shin H.J., Kusumahastuti D.K.A. et al. // Inorg. Chim. Acta. 2020. V. 511. Art. 119789. https://doi.org/10.1016/j.ica.2020.119789
  2. Amani V., Alizadeh R., Alavije H.S. et al. // J. Mol. Struct. 2017. V. 1142. P. 92. https://doi.org/10.1016/j.molstruc.2017.04.034
  3. Priola E., Bonomettia E., Brunella V. et al. // Polyhedron. 2016. V. 104. P. 25. https://doi.org/10.1016/j.poly.2015.10.059
  4. Fu Y., Sun Y., Zheng Y. et al. // Sep. Purif. Technol. 2021. V. 259. Art. 118112. https://doi.org/10.1016/j.seppur.2020.118112
  5. Samiee S., Bahmaie M., Motamedi H. et al. // Polyhedron. 2020. V. 184. Art. 114567. https://doi.org/10.1016/j.poly.2020.114567
  6. Sabounchei S.J., Shahriary P., Rudbari H.A., Chehregani A. // J. Inorg. Organomet. Polym. 2015. V. 25. № 5. P. 1032. https://doi.org/10.1007/s10904-015-0206-5
  7. Cox M.J., Tiekink E.R.T. // Z. Kristallogr. 1999. V. 214. № 9. P. 571. https://doi.org/10.1524/zkri.1999.214.9.571
  8. Jotani M.M., Tan Y.S., Tiekink E.R.T. // Z. Kristallogr. 2016. V. 231. P. 403. https://doi.org/10.1515/zkri-2016-1943
  9. Howie R.A., Tiekink E.R.T., Wardell J.L., Wardell S.M.S.V. // J. Chem. Crystallogr. 2009. V. 39. Р. 293. https://doi.org/10.1007/s10870-008-9473-0
  10. Gurumoorthy G., Thirumaran S.S., Ciattini S. // Polyhedron. 2016. V. 118. P. 143. https://doi.org/10.1016/j.poly.2016.08.001
  11. Singh A., Singh A., Singh S. et al. // CrystEngComm. 2021. V. 23. P. 2414. https://doi.org/10.1039/d0ce01867h
  12. Rajput G., Yadav M.K., Thakur T.S. et al. // Polyhedron. 2014. V. 69. Р. 225. https://doi.org/10.1016/j.poly.2013.12.005
  13. Shotonwa I.O., Osifeko O.L., Amos S.F. et al. // J. Mol. Struct. 2024. V. 1310. Art. 138242. https://doi.org/10.1016/j.molstruc.2024.138242
  14. Khan A., Hayat F., Butler I.S. et al. // Polyhedron. 2021. V. 193. Art. 114876. https://doi.org/10.1016/j.poly.2020.114876
  15. Altaf M., Stoeckli-Evans H., Batool S.S. et al. // J. Coord. Chem. 2010. V. 63. № 7. P. 1176. https://doi.org/10.1080/00958971003759085
  16. Ajibade P.A., Onwudiwe D.C., Moloto M.J. // Polyhedron. 2011. V. 30. № 2. P. 246. https://doi.org/10.1016/j.poly.2010.10.023
  17. Dar S.H., Thirumaran S., Selvanayagam S. // Polyhedron. 2015. V. 96. P. 16. https://doi.org/10.1016/j.poly.2015.04.020
  18. Oladipo S.D., Omondi B. // Transition Met. Chem. 2020. V. 45. № 6. P. 391. https://doi.org/10.1007/s11243-020-00391-y
  19. Лосева О.В., Родина Т.А., Иванов А.В. и др. // Изв. АН. Сер. хим. 2019. № 4. С. 782 (Loseva O.V., Rodina T.A., Ivanov A.V. et al. // Russ. Chem. Bull. 2019. V. 68. № 4. P. 782). https://doi.org/10.1007/s11172-019-2486-3
  20. Book L., Chieh C. // Acta Crystallogr. B. 1980. V. 36. P. 300. https://doi.org/10.1107/s0567740880003135
  21. Angeloski A., Rawal A., Bhadbhade M. et al. // Cryst. Growth Des. 2019. V. 19. Р. 1125. https://doi.org/10.1021/acs.cgd.8b01619
  22. Loseva O.V., Rodina T.A., Shah F.U. et al. // Inorg. Chim. Acta. 2022. V. 533. Art. 120786. https://doi.org/10.1016/j.ica.2021.120786
  23. Cox M.J., Tiekink E.R.T. // Z. Kristallogr. 1997. V. 212. № 7. P. 542. https://doi.org/10.1524/zkri.1997.212.7.542
  24. Иванов А.В., Корнеева Е.В., Буквецкий Б.В. и др. // Коорд. xимия. 2008. Т. 34. № 1. С. 61 (Ivanov A.V., Korneeva E.V., Bukvetskii B.V. et al. // Russ. J. Coord. Chem. 2008. V. 34. № 1. P. 34). https://doi.org/
  25. Hexem J.G., Frey M.H., Opella S.J. // J. Chem. Phys. 1982. V. 77. № 8. P. 3847. https://doi.org/10.1063/1.444338
  26. Harris R.K., Jonsen P., Packer K.J. // Magn. Reson. Chem. 1985. V. 23. № 7. P. 565. https://doi.org/10.1002/mrc.1260230716
  27. APEX2 (version 1.08), SAINT (version 7.03), SADABS (version 2.11), SHELXTL (version 6.12). Madison (WI, USA): Bruker AXS Inc., 2004.
  28. Sheldrick G.M. // Acta Crystallogr. C. 2015. V. 71. № 1. P. 3. https://doi.org/10.1107/S2053229614024218
  29. Pines A., Gibby M.G., Waugh J.S. // J. Chem. Phys. 1972. V. 56. № 4. P. 1776. https://doi.org/10.1063/1.1677439
  30. Earl W.L., VanderHart D.L. // J. Magn. Reson. 1982. V. 48. № 1. P. 35. https://doi.org/10.1016/0022-2364(82)90236-0
  31. Morcombe C.R., Zilm K.W. // J. Magn. Reson. 2003. V. 162. № 2. P. 479. https://doi.org/10.1016/S1090-7807(03)00082-X
  32. Бырько В.М. Дитиокарбаматы. М.: Наука, 1984. 341 с.
  33. Беллами Л. Инфракрасные спектры сложных молекул. М.: Изд-во иностранной литературы, 1963. 590 с.
  34. Fabretti A.C., Forghieri F., Giusti A. et al. // Spectrochim. Acta. A. 1984. V. 40. Р. 343. https://doi.org/10.1016/0584-8539(84)80059-8
  35. Yin H., Li F., Wang D. // J. Coord. Chem. 2007. V. 60. № 11. P. 1133. https://doi.org/10.1080/00958970601008846
  36. Накамото К. Инфракрасные спектры неорганических и координационных соединений. М.: Мир, 1991. 536 с.
  37. Thomas I.D., Kocher K.R., Viehweg J.A. et al. // Acta Crystallogr. E. 2023. V. 79. № 10. Р. 952. https://doi.org/10.1107/S205698902300823X
  38. Bondi A. // J. Phys. Chem. 1964. V. 68. № 3. P. 441. https://doi.org/10.1021/j100785a001
  39. Prasad R., Yadav R., Trivedi M. et al. // J. Mol. Struct. 2016. V. 1103. P. 265. http://dx.doi.org/10.1016/j.molstruc.2015.10.001
  40. Yang L., Powel D.R., Houser R.P. // Dalton Trans. 2007. V. 9. P. 955. https://doi.org/10.1039/b617136b
  41. Addison A.W., Rao T.N., Reedijk J. et al. // Dalton Trans. 1984. V. 7. P. 1349. https://doi.org/10.1039/DT9840001349
  42. Wang W., Ji B., Zhang Y. // J. Phys. Chem. A. 2009. V. 113. № 28. P. 8132. https://doi.org/10.1021/jp904128b
  43. Scilabra P., Terraneo G., Resnati G. // Acc. Chem. Res. 2019. V. 52. N 5. P. 1313. https://doi.org/10.1021/acs.accounts.9b00037
  44. Бахтиярова Ю.В., Аксунова А.Ф., Галкина И.В. и др. // Изв. АН. Сер. хим. 2016. № 5. С. 1313.
  45. Лосева О.В., Родина Т.А., Герасименко А.В., Иванов А.В. // Коорд. химия. 2023. Т. 49. № 1. С. 13 (Loseva O.V., Rodina T.A., Gerasimenko A.V., Ivanov A.V. // Russ. J. Coord. Chem. 2023. V. 49. № 1. P. 10). https://doi.org/10.1134/S1070328422700233
  46. Лидин Р.А., Андреева Л.Л., Молочко В.А. Справочник по неорганической химии. М.: Химия, 1987. 319 с.
  47. Loseva O.V., Rodina T.A., Smolentsev A.I., Ivanov A.V. // Polyhedron. 2017. V. 134. P. 238. https://doi.org/10.1016/j.poly.2017.06.021
  48. Leckey J.H., Nulf L.E. Thermal decomposition of mercuric sulfide, Y/DZ-1124 (1994): Oak Ridge Y-12 Plant (TN, USА). https://doi.org/10.2172/41313

Supplementary files

Supplementary Files
Action
1. JATS XML
2. Fig. 1. Tetranuclear macrocyclic molecule [Hg4{S2CN(CH3)2}4Cl4]. Ellipsoids 50% probability.

Download (259KB)
3. Fig. 2. Spatial configuration of the 16-membered metallocycle [Hg4S8C4] in the tetranuclear molecule I.

Download (83KB)
4. Fig. 3. Fragment of the 2D pseudopolymer layer in structure I. The secondary bonds S Cl and Hg Cl are shown by the dotted line. Alkyl substituents are not shown. Symmetric transformations: a 1 – x, 1 – y, 1 – z; b –½ + x, ½ – y, –½ + z.

Download (288KB)
5. Fig. 4. Hydrogen bonds in the supramolecular pseudopolymer 3D framework I.

Download (242KB)
6. Fig. 5. TG (a) and DSC (b) curves of complex I.

Download (158KB)
7. Fig. 6. TG (a) and DSC (b) curves of the mononuclear mercury(II) complex [Hg{S2CN(CH3)2}2].

Download (167KB)
8. Supplementary Material
Download (309KB)

Copyright (c) 2025 Российская академия наук