Palladium Complexes of Pyrimidine-2-thiones: Synthesis, Structures, and Properties

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription or Fee Access

Abstract

Complexes [PdL2Cl2] (I) and [PdL2Вr2] (II) (L is 5-acetyl-6-methyl-4-(3-nitrophenyl)-1,2,3,4-tetrahydropyrimidine-2-thione) are synthesized and characterized by spectral methods (1Н, 13С NMR and IR spectroscopy). The crystal structure of complex I is determined (CIF file ССDС no. 2233053) in which the palladium atom is coordinated by two halide ions and two sulfur atoms of two ligands L in a distorted square planar geometry. The catalytic activity of the synthesized palladium(II) complexes in the model epoxidation of allyl alcohol is estimated in comparison with the catalytic activity of the corresponding palladium halides and titanium-containing zeolite TS-1.

Full Text

Restricted Access

About the authors

A. S. Kuzovlev

Moscow State University; Tyumen State University

Author for correspondence.
Email: a.s.kuzovlev@gmail.com
Russian Federation, Moscow; Tyumen

N. A. Gordeeva

Russian Technological University (MIREA)

Email: a.s.kuzovlev@gmail.com
Russian Federation, Moscow

Zh. Yu. Pastukhova

Russian Technological University (MIREA)

Email: a.s.kuzovlev@gmail.com
Russian Federation, Moscow

V. V. Chernyshev

Moscow State University; Frumkin Institute of Physical Chemistry and Electrochemistry, Russian Academy of Sciences

Email: a.s.kuzovlev@gmail.com
Russian Federation, Moscow; Moscow

G. A. Buzanov

Kurnakov Institute of General and Inorganic Chemistry, Russian Academy of Sciences

Email: a.s.kuzovlev@gmail.com
Russian Federation, Moscow

S. F. Dunaev

Moscow State University

Email: a.s.kuzovlev@gmail.com
Russian Federation, Moscow

L. G. Bruk

Russian Technological University (MIREA)

Email: a.s.kuzovlev@gmail.com
Russian Federation, Moscow

References

  1. Kokina T.E., Glinskaya L. A., Sheludyakova L. A. et al. // Polyhedron. 2019. V. 163. P. 121.
  2. Moro A.C., Mauro A. E., Netto A. V.G. et al. // Eur. J. Med. Chem. 2009. V. 44. № 11. P. 4611.
  3. Nadeem S., Bolte M., Ahmad S. et al. // Inorg. Chim. Acta. 2010. V. 363. № 13. P. 3261.
  4. Rohini G., Ramaiah K., Aneesrahman K. N. et al. // Appl. Organomet. Chem. 2018. V. 32. № 12. P. 4567.
  5. Da Silva D. L., Reis F. S., Muniz D. R. et al. // Bioorg. Med. Chem. 2012. V. 20. № 8. P. 2645.
  6. Sashidhara K.V., Avula S. R., Sharma K. et al. // Eur. J. Med. Chem. 2013. V. 60. P. 120.
  7. Kuzovlev A.S., Volkova D. A., Parfenova I. V. et al. // New J. Chem. 2020. V. 44. P. 7865.
  8. Kappe C.O. // Eur. J. Med. Chem. 2000. V. 35. P. 1043.
  9. Sati B. E., Sati H., Nargund L. V.G et al. // Orient. J. Chem. 2012. V. 28. № 2. P. 1055.
  10. Chikhale R., Thorat S., Pant A. et al. // Bioorg. Med. Chem. 2015. V. 23. № 20. P. 6689.
  11. Sawant R.L., Sarode V. I., Jadha G. D. et al. // Med. Chem. Res. 2011. V. 21. № 8. P. 1825.
  12. Kwon O.W., Moon E., Chari M. A. et al. // Bioorg. Med. Chem. Lett. 2012. V. 22. № 16. Р. 5199.
  13. Shkurko O.P., Tolstikova T. G., Sedova V. F. // Rus. Chem. Rev. 2016. V. 85. № 10. P. 1056.
  14. Lauro G., Strocchia M., Terracciano S. et al. // Eur. J. Med. Chem. 2014. V. 80. P. 407.
  15. Crespo A., El Maatougui A., Biagini P. et al. // ACS Med. Chem. Lett. 2013. V. 4. № 11. P. 1031.
  16. Cepeda V., Fuertes M., Castilla J. et al. // Anti-Cancer Agents Med. Chem. 2007. V. 7. № 1. P. 3.
  17. Alderden R.A., Hall M. D., Hambley T. W. // J. Chem. Ed. 2006. V. 83. № 5. P. 728.
  18. Kartalou, M. Essigmann, J.M. // Mut. Res. 2001. V. 478. № 1–2. Р. 23.
  19. De Moura T. R., Cavalcanti S. L., Sakamoto-Hojo E.T. et al. // Transition Met. Chem. 2017. V. 42. № 6. P. 565.
  20. Dorairaj D.P., Haribabu J., Hsu S. C.N. et al. // Inorg. Chem. Commun. 2021. V. 134. P. 109018.
  21. Dorairaj D.P., Haribabu J., Chithravel V. et al. // Res. Chem. 2021. V. 3. P. 100157.
  22. Bharati P., Bharti A., Nath P. et al. // Inorg. Chim. Acta. 2016. V. 443. P. 160.
  23. Pearson R.G. // Phys. Inorg. Chem. 1963. V.85. № 22. P. 3533.
  24. Ruan J., Xiao J. // Acc. Chem. Res. 2011. V. 44. № 8. Р. 614.
  25. Sherwood J., Clark J. H., Fairlamb I. J.S. et al. // Green Chem. 2019. V. 21. P. 2164.
  26. Gadge S.T., Bhanage B. M. // RSC Adv. 2014. V. 4. P. 10367.
  27. Wang D., Weinstein A. B., White P. B. et al. // Chem. Rev. 2018. V. 118. № 5. P. 2636.
  28. Engle K.M., Yu J-Q. // J. Org. Chem. 2013. V. 78. P. 8927.
  29. Zhang L-M., Li H-Y., Li H-X. et al. // Inorg. Chem. 2017. V. 56. P. 11230.
  30. Jia W-G., Gao L-L, Wang Z-B. et al. // RSC Adv. 2017. V. 7. P. 42792.
  31. Chernyshev V.V. // Russ. Chem. Bull. Int. Ed. 2001. V. 50. P. 2273.
  32. Cerny R. // Crystals. 2017. V. 7. P. 142.
  33. Hughes C.E., Reddy G. N.M., Masiero S. et al. // Chem. Sci. 2017. V. 8. P. 3971.
  34. Pawley G.S. // J. Appl. Crystallogr. 1981. V. 14. P. 357.
  35. Zlokazov V.B., Chernyshev V. V. // J. Appl. Crystallogr. 1992. V. 25. P. 447.
  36. Zhukov S.G., Chernyshev V. V., Babaev E. V. et al. // Z. Kristallogr. 2001. V. 216. P. 5.
  37. Zlokazov V.B., Chernyshev V. V. // J. Appl. Crystallogr. 1992. V. 25. P. 447.
  38. Andreev S.V., Zverev S. A., Zamilatskov I. A. et al. // Acta Crystallorg. C. 2017. V. 73. P. 47.
  39. Erzina D.R., Zamilatskov I.A, Stanetskaya N. M. et al. // Eur. J. Org. Chem. 2019. P. 1508.
  40. Spek A.L. // Acta Crystallorg. D. 2009. V. 65. P. 148.
  41. Pastukhova Zh. Yu., Levitin V. V., Katsman E. A. et al. // Kinet. Catal. 2021. V. 62. № 5. P. 551.
  42. Groom C.R., Allen F. H. // Angew. Chem. 2014. V. 53. P. 662.
  43. Bordiga S., Bonina F., Damin A. et al. // Phys. Chem. Chem. Phys. 2007. V. 9. № 35. P. 4854.
  44. Taramasso M., Perego G., Notari B. US Pat. № 4410501. 1983.
  45. Flaningen E.M., Bennett J. M., Grose R. W. et al. // Nature. 1978. V. 271. P. 512.
  46. Lane B.S., Burgess K. // Chem. Rev. 2003. V. 103. P. 2457.

Supplementary files

Supplementary Files
Action
1. JATS XML
2. Scheme 1.

Download (122KB)
3. Fig. 1. Molecular structure of complex I, showing the numbering of the non-hydrogen atoms and the atomic displacement spheres of 50% probability. The Pd(1) atom is at the centre of the inversion, the unnumbered atoms are linked to the numbered symmetry operations i - x, 1 - y, 2 - z.

Download (454KB)
4. Fig. 2. Experimental diffractograms of II (curve 1) and I (curve 2).

Download (116KB)
5. Scheme 2.

Download (127KB)
6. Fig. 3. Kinetic curves of reagent consumption (AC - allyl alcohol, SP - hydrogen peroxide) and target product formation (GD - glycidol) during the epoxidation process using TS-1 as a catalyst.

Download (121KB)

Copyright (c) 2024 Российская академия наук