Composite Materials Based on Biocompatible Metal-Organic Framework and Anthocyanins from Hibiscus sabdariffa for Active Food Packaging

Мұқаба

Дәйексөз келтіру

Толық мәтін

Ашық рұқсат Ашық рұқсат
Рұқсат жабық Рұқсат берілді
Рұқсат жабық Тек жазылушылар үшін

Аннотация

The biocompatible metal-organic framework [Zn4(GA)4(H2O)4] · 4H2O (H2GA = glutamic acid) was used as a container for anthocyanins from Hibiscus sabdariffa in composite films based on kappa-carrageenan and hydroxypropyl methylcellulose. The obtained composite materials showed high antioxidant activity and ability to undergo pH-induced color change upon reactions with gaseous products of pathogen development and, hence, possess the potential for practical application as functional materials for food packaging.

Толық мәтін

Рұқсат жабық

Авторлар туралы

A. Pak

Nesmeyanov Institute of Organoelement Compounds, Russian Academy of Sciences; Moscow Institute of Physics and Technology (National Research University)

Email: novikov84@gmail.com
Ресей, Moscow; Moscow

V. Novikov

Moscow Institute of Physics and Technology (National Research University)

Хат алмасуға жауапты Автор.
Email: novikov84@gmail.com
Ресей, Moscow

Әдебиет тізімі

  1. Yildirim S., Röcker B., Pettersen M. K. et al. // Compr. Rev. Food Sci. Food Saf. 2018. V. 17. № 1. P. 165.
  2. Ozdemir M., Floros J. D. // Crit. Rev. Food Sci. Nutr. Taylor & Francis, 2004. V. 4. № 3. P. 185.
  3. Oliveira Filho J. G. de, Braga A. R.C., Oliveira B. R. de et al. // Food Res. Int. 2021. V. 142. P. 110202.
  4. Khoo H.E., Azlan A., Tang S. T. et al. // Food Nutr. Res. 2017. V. 61. № 1. P. 1361779.
  5. Etxabide A., Kilmartin P. A., Maté J. I. // Food Control. 2021. V. 121. P. 107645.
  6. Priyadarshi R., Ezati P., Rhim J.-W. // ACS Food Sci. Technol. 2021. V. 1. № 2.
  7. Abdallah E.M. // J. Acute Dis. 2016. V. 5. № 6. P. 512.
  8. Jabeur I., Pereira E., Barros L. et al. // Food Res. Int. 2017. V. 100. P. 717.
  9. Lin T.-L., Lin H.-H., Chen C.-C. et al. // Nutr. Res. 2007. V. 27. № 3. P. 140.
  10. Ali B.H., Cahliková L., Opletal L. et al. // J. Pharm. Pharmacol. 2017. V. 69. № 9. P. 1219.
  11. Mozaffari-Khosravi H., Jalali-Khanabadi B.-A., Afkhami-Ardekani M. et al. // J. Hum. Hypertens. 2009. V. 23. № 1. P. 48.
  12. Siracusa V., Rocculi P., Romani S. et al. // Trends Food Sci. Technol. 2008. V. 19. № 12. P. 634.
  13. Dickinson E. // Food Hydrocoll. Elsevier. 2009. V. 23. № 6. P. 1473.
  14. Saha D., Bhattacharya S. // J. Food Sci. Technol. 2010. V. 47. № 6. P. 587.
  15. Krempel M., Griffin K., Khouryieh H. Preservatives and Preservation Approaches in Beverages / Еd. Grumezescu A. M., Holban A. M. Academic Press, 2019. P. 427.
  16. Vries J. de // Conf. Gums and Stabilisers for the Food Industry – 12. 2004. P. 23.
  17. BeMiller J.N. // Gluten-Free Cereal Products and Beverages / Еd. Arendt E. K., Dal Bello F. San Diego: Academic Press, 2008. P. 203.
  18. Jiménez A., Requena R., Vargas M. et al. Role of Materials Science in Food Bioengineering. Elsevier, 2018. P. 266.
  19. Hanula M., Pogorzelska-Nowicka E., Pogorzelski G. et al. // Agriculture. Multidisciplinary Digital Publishing Institute. 2021. V. 11. № 7. P. 653.
  20. Gutiérrez T.J., León I. E., Ponce A. G. et al. // Polymers. Multidisciplinary Digital Publishing Institute. 2022. V. 14. № 22. P. 4881.
  21. Alizadeh Sani M., Tavassoli M., Salim S. A. et al. // Food Hydrocoll. 2022. V. 124. P. 107324.
  22. Wang Q., Astruc D. // Chem. Rev. 2020. V. 120. № 2. P. 1438.
  23. Kirchon A., Feng L., Drake H. F. et al. // Chem. Soc. Rev. 2018. V. 47. № 23. P. 8611.
  24. McKinlay A.C., Morris R. E., Horcajada P. et al. // Ang Chem Int Ed. 2010. V. 49. № 36. P. 6260.
  25. Li J.-R., Sculley J., Zhou H.-C. // Chem. Rev. 2012. V. 112. № 2. Р. 869.
  26. Dybtsev D.N., Nuzhdin A. L., Chun H. et al. // Angew. Chem. 2006. V. 118. № 6. P. 930.
  27. Horcajada P., Chalati T., Serre C. et al. // Nat. Mater. 2010. V. 9. P. 172.
  28. Wang H.-S. // Coord. Chem. Rev. 2017. V. 349. P. 139.
  29. Pak A.M., Zakharchenko E. N., Korlyukov A. A. et al. // Russ. J. Coord. Chem. 2022. V. 48. № 4. P. 195.
  30. Kathalikkattil A.C., Roshan R., Tharun J. et al. // Chem. Commun. 2016. V. 52. № 2. P. 280.
  31. Cherrington R., Liang J. Materials and Deposition for Plastic Components for Multifunctionalty. Oxford: William Andrew Publishing, 2016. V. 13. № 6. P. 3340.
  32. Rhein-Knudsen N., Ale M. T., Meyer A. S. // Mar. Drugs. 2015. V. 13. № 6. P. 3340.

Қосымша файлдар

Қосымша файлдар
Әрекет
1. JATS XML
2. Fig. 1. X-ray powder diffraction data for ZnGlu samples and composite films based on it, added in amounts of 5, 15 and 30% of the total mass of hydrocolloids, in comparison with the theoretically calculated ZnGlu diffractogram.

Жүктеу (119KB)
3. Fig. 2. Photos of composite films based on ZnGlu and ZnGlu-HE of various compositions.

Жүктеу (152KB)
4. Fig. 3. Color change of the extract of the cups of the Sudanese rose depending on the acidity of the medium indicated on the vials.

Жүктеу (56KB)
5. Fig. 4. Color change of composite films based on ZnGlu-HE when exposed to acetic acid and ammonia vapors. To the left of the photo, the weight percentage of the MOC is indicated relative to the total weight of the hydrocolloid matrix.

Жүктеу (82KB)
6. Fig. 5. The reducing ability of composite films based on ZnGlu-HE in comparison with composite films containing ZnGlu.

Жүктеу (101KB)

© Российская академия наук, 2024