Composite Materials Based on Biocompatible Metal-Organic Framework and Anthocyanins from Hibiscus sabdariffa for Active Food Packaging

Capa

Citar

Texto integral

Acesso aberto Acesso aberto
Acesso é fechado Acesso está concedido
Acesso é fechado Somente assinantes

Resumo

The biocompatible metal-organic framework [Zn4(GA)4(H2O)4] · 4H2O (H2GA = glutamic acid) was used as a container for anthocyanins from Hibiscus sabdariffa in composite films based on kappa-carrageenan and hydroxypropyl methylcellulose. The obtained composite materials showed high antioxidant activity and ability to undergo pH-induced color change upon reactions with gaseous products of pathogen development and, hence, possess the potential for practical application as functional materials for food packaging.

Texto integral

Acesso é fechado

Sobre autores

A. Pak

Nesmeyanov Institute of Organoelement Compounds, Russian Academy of Sciences; Moscow Institute of Physics and Technology (National Research University)

Email: novikov84@gmail.com
Rússia, Moscow; Moscow

V. Novikov

Moscow Institute of Physics and Technology (National Research University)

Autor responsável pela correspondência
Email: novikov84@gmail.com
Rússia, Moscow

Bibliografia

  1. Yildirim S., Röcker B., Pettersen M. K. et al. // Compr. Rev. Food Sci. Food Saf. 2018. V. 17. № 1. P. 165.
  2. Ozdemir M., Floros J. D. // Crit. Rev. Food Sci. Nutr. Taylor & Francis, 2004. V. 4. № 3. P. 185.
  3. Oliveira Filho J. G. de, Braga A. R.C., Oliveira B. R. de et al. // Food Res. Int. 2021. V. 142. P. 110202.
  4. Khoo H.E., Azlan A., Tang S. T. et al. // Food Nutr. Res. 2017. V. 61. № 1. P. 1361779.
  5. Etxabide A., Kilmartin P. A., Maté J. I. // Food Control. 2021. V. 121. P. 107645.
  6. Priyadarshi R., Ezati P., Rhim J.-W. // ACS Food Sci. Technol. 2021. V. 1. № 2.
  7. Abdallah E.M. // J. Acute Dis. 2016. V. 5. № 6. P. 512.
  8. Jabeur I., Pereira E., Barros L. et al. // Food Res. Int. 2017. V. 100. P. 717.
  9. Lin T.-L., Lin H.-H., Chen C.-C. et al. // Nutr. Res. 2007. V. 27. № 3. P. 140.
  10. Ali B.H., Cahliková L., Opletal L. et al. // J. Pharm. Pharmacol. 2017. V. 69. № 9. P. 1219.
  11. Mozaffari-Khosravi H., Jalali-Khanabadi B.-A., Afkhami-Ardekani M. et al. // J. Hum. Hypertens. 2009. V. 23. № 1. P. 48.
  12. Siracusa V., Rocculi P., Romani S. et al. // Trends Food Sci. Technol. 2008. V. 19. № 12. P. 634.
  13. Dickinson E. // Food Hydrocoll. Elsevier. 2009. V. 23. № 6. P. 1473.
  14. Saha D., Bhattacharya S. // J. Food Sci. Technol. 2010. V. 47. № 6. P. 587.
  15. Krempel M., Griffin K., Khouryieh H. Preservatives and Preservation Approaches in Beverages / Еd. Grumezescu A. M., Holban A. M. Academic Press, 2019. P. 427.
  16. Vries J. de // Conf. Gums and Stabilisers for the Food Industry – 12. 2004. P. 23.
  17. BeMiller J.N. // Gluten-Free Cereal Products and Beverages / Еd. Arendt E. K., Dal Bello F. San Diego: Academic Press, 2008. P. 203.
  18. Jiménez A., Requena R., Vargas M. et al. Role of Materials Science in Food Bioengineering. Elsevier, 2018. P. 266.
  19. Hanula M., Pogorzelska-Nowicka E., Pogorzelski G. et al. // Agriculture. Multidisciplinary Digital Publishing Institute. 2021. V. 11. № 7. P. 653.
  20. Gutiérrez T.J., León I. E., Ponce A. G. et al. // Polymers. Multidisciplinary Digital Publishing Institute. 2022. V. 14. № 22. P. 4881.
  21. Alizadeh Sani M., Tavassoli M., Salim S. A. et al. // Food Hydrocoll. 2022. V. 124. P. 107324.
  22. Wang Q., Astruc D. // Chem. Rev. 2020. V. 120. № 2. P. 1438.
  23. Kirchon A., Feng L., Drake H. F. et al. // Chem. Soc. Rev. 2018. V. 47. № 23. P. 8611.
  24. McKinlay A.C., Morris R. E., Horcajada P. et al. // Ang Chem Int Ed. 2010. V. 49. № 36. P. 6260.
  25. Li J.-R., Sculley J., Zhou H.-C. // Chem. Rev. 2012. V. 112. № 2. Р. 869.
  26. Dybtsev D.N., Nuzhdin A. L., Chun H. et al. // Angew. Chem. 2006. V. 118. № 6. P. 930.
  27. Horcajada P., Chalati T., Serre C. et al. // Nat. Mater. 2010. V. 9. P. 172.
  28. Wang H.-S. // Coord. Chem. Rev. 2017. V. 349. P. 139.
  29. Pak A.M., Zakharchenko E. N., Korlyukov A. A. et al. // Russ. J. Coord. Chem. 2022. V. 48. № 4. P. 195.
  30. Kathalikkattil A.C., Roshan R., Tharun J. et al. // Chem. Commun. 2016. V. 52. № 2. P. 280.
  31. Cherrington R., Liang J. Materials and Deposition for Plastic Components for Multifunctionalty. Oxford: William Andrew Publishing, 2016. V. 13. № 6. P. 3340.
  32. Rhein-Knudsen N., Ale M. T., Meyer A. S. // Mar. Drugs. 2015. V. 13. № 6. P. 3340.

Arquivos suplementares

Arquivos suplementares
Ação
1. JATS XML
2. Fig. 1. X-ray powder diffraction data for ZnGlu samples and composite films based on it, added in amounts of 5, 15 and 30% of the total mass of hydrocolloids, in comparison with the theoretically calculated ZnGlu diffractogram.

Baixar (119KB)
3. Fig. 2. Photos of composite films based on ZnGlu and ZnGlu-HE of various compositions.

Baixar (152KB)
4. Fig. 3. Color change of the extract of the cups of the Sudanese rose depending on the acidity of the medium indicated on the vials.

Baixar (56KB)
5. Fig. 4. Color change of composite films based on ZnGlu-HE when exposed to acetic acid and ammonia vapors. To the left of the photo, the weight percentage of the MOC is indicated relative to the total weight of the hydrocolloid matrix.

Baixar (82KB)
6. Fig. 5. The reducing ability of composite films based on ZnGlu-HE in comparison with composite films containing ZnGlu.

Baixar (101KB)

Declaração de direitos autorais © Российская академия наук, 2024