Dimolybdenum Perfluorotetrabenzoate and Silver Perfluorocyclohexanoate: Synthesis, Evaporation, and Thermodynamic Characteristics

Capa

Citar

Texto integral

Acesso aberto Acesso aberto
Acesso é fechado Acesso está concedido
Acesso é fechado Somente assinantes

Resumo

Anhydrous dimolybdenum perfluorotetrabenzoate Мо2(ООСС6F5)4 (I) and silver perfluorocyclohexanoate AgOOCC6F11 (II) are synthesized for the first time. Complex I is synthesized by the transcarboxylation of dimolybdenum tetraacetate with pentafluorobenzoic acid. Compound II is synthesized from freshly prepared silver oxide and perfluorocyclohexanoic acid. The evaporation of the complexes is studied by the Knudsen method with mass spectral analysis of the gas phase. The sublimation of Мо2(ООСС6F5)4 is congruent. The enthalpy of sublimation and the equation of the temperature dependence of the vapor pressure are found. The evaporation of AgOOCC6F11 is accompanied by the complete thermal decomposition with the formation of Ag(s) and mainly С6F12, С6F10, and CO2 molecules. The standard enthalpies of thermal decomposition (∆rH°298.15(5) = 439.5 Ѓ} 16.4 kJ/mol, (∆rH°298.15(6) = 325.2 Ѓ} 14.0 kJ/mol) and formation of the silver complex ((∆rH°298.15(AgOOCC6F11, c) = –2751.0 Ѓ} 24.4 kJ/mol) are determined.

Texto integral

Acesso é fechado

Sobre autores

D. Kayumova

Kurnakov Institute of General and Inorganic Chemistry, Russian Academy of Sciences

Email: alikhan@igic.ras.ru
Rússia, Moscow

I. Malkerova

Kurnakov Institute of General and Inorganic Chemistry, Russian Academy of Sciences

Email: alikhan@igic.ras.ru
Rússia, Moscow

D. Yambulatov

Kurnakov Institute of General and Inorganic Chemistry, Russian Academy of Sciences

Email: alikhan@igic.ras.ru
Rússia, Moscow

A. Sidorov

Kurnakov Institute of General and Inorganic Chemistry, Russian Academy of Sciences

Email: alikhan@igic.ras.ru
Rússia, Moscow

I. Eremenko

Kurnakov Institute of General and Inorganic Chemistry, Russian Academy of Sciences

Email: alikhan@igic.ras.ru
Rússia, Moscow

A. Alikhanyan

Kurnakov Institute of General and Inorganic Chemistry, Russian Academy of Sciences

Autor responsável pela correspondência
Email: alikhan@igic.ras.ru
Rússia, Moscow

Bibliografia

  1. Alikhanyan, A.S., Malkerova, I.P., Il′ina, E.G., et al., Zh. Neorg. Khim., 1993, vol. 38, no. 10, p. 1736.
  2. Kharitonenko, N.M., Rykov, A.N., Korenev, Yu.M., et al., Zh. Neorg. Khim., 1997, vol. 42, no. 7, p. 1359.
  3. Kiseleva E.A., Besedin D.V., and Krenev Yu.M., Zh. Neorg. Khim., 2005, vol. 79, no. 4, p. 629.
  4. Alikhanyan, A.S., Didenko, K.V., Girichev, G.V., et al., Struct. Chem., 2011, no. 22, p. 401. https://doi.org/10.1007/s11224-010-9722-7
  5. Malkerova, I.P., Kamkin, N.N., Dobrokhotova, Zh.V., et al., Russ. J. Inorg. Chem., 2014, vol. 59, no. 7, p. 665.
  6. Morozova, E.A., Malkerova, I.P., Kiskin, M.A., et al., Russ. J. Inorg. Chem., 2018, vol. 63, no. 11, p. 1436. https://doi.org/10.1134/S0036023618110128
  7. Malkerova, I.P., Belova, E.V., Kayumova, D.B., et al., Russ. J. Inorg. Chem., 2023, vol. 68, no. 5, p. 569. https://doi.org/10.1134/S0036023623600557
  8. Malkerova, I.P., Kayumova, D.B., Belova, E.V., et al., Russ. J. Coord. Chem., 2022, vol. 48, no. 2, p. 84. https://doi.org/10.1134/S107032842202004X
  9. Malkerova, I.P., Kayumova, D.B., Belova, E.V., et al., Russ. J. Coord. Chem., 2022, vol. 48, no. 10, p. 608. https://doi.org/10.1134/S1070328422100037
  10. Hochberg, E., Walks, P., and Abbott, E.H., Inorg. Chem., 1974, vol. 13, no. 8, p. 1824. https://doi.org/10.1021/ic50138a008
  11. Cotton, F.A., Murillo, C.A., and Walton, R.A., Multiple Bonds between Metal Atoms, New York: Springer, 2005.
  12. Cavell, J.J., Garner, C.D., Pilcher, G., and Parkes, S., J. Chem. Soc., Dalton Trans., 1979, p. 1714. https://doi.org/10.1039/DT9790001714
  13. Slyusareva, I.V., Kondrat′ev, Yu.V., Kozin, A.O., et al., Vestn. Sankt-Peterbkrgskogo un-ta. Fiz.-khim., 2007, no. 3, p. 138.
  14. Slyusareva, I.V., Kondrat′ev, Yu.V., Kozin, A.O., et al., Vestn. Sankt-Peterbkrgskogo un-ta. Fiz.-khim., 2008, no. 3, p. 64.
  15. Morozova, E.A., Dobrokhotova, Zh.V., and Alikhanyan, A.S., J. Therm. Anal. Calorim., 2017, vol. 130, no. 3, p. 2211. https://doi.org/10.1007/s10973-017-6583-y
  16. White, E., Org. Mass Spectrom., 1978, vol. 13, no. 9, p. 495. https://doi.org/10.1002./oms.121010903
  17. Matsumoto, K., Kosugi, Y., Yanagisawa, M., et al., Org. Mass Spectrom., 1980, vol. 15, no. 12, p. 606. https://doi.org/10.1002./oms.1210151203
  18. Hastic, J.W., Zmbov, K.F., and Margrave, J.L., J. Inorg. Nucl. Chem., 1968, vol. 30, no. 3, p. 729.
  19. Asano, M., Kou, T., and Yasue, Y., Non-Cryst. Solids, 1987, vol. 92, no. 2, p. 245. https://doi.org/10.1016/S0022-3093(87)80042-X
  20. Skudlarski, K., Drowart, J., Exsteen, G., et al., Trans. Faraday Soc., 1967, vol. 63, p. 1146. https://doi.org/10.1039/TF9676301146
  21. Sidorov, L.N. Mass-spektral′nye termodinamicheskie issledovaniya (Mass Spectral Thermodynamic Studies), Sidorov, L.N., Korobov, M.V., and Zhuravleva, L.V., Eds., Moscow: Mosk. Univ., 1985.
  22. NIST Chemistry WebBook, NIST Standard Reference Database Number 69, Linstrom P.J., Mallard W.G., Eds., National Institute of Standards and Technology, Gaithersburg MD. https://doi.org/10.18434/T4D303
  23. Lines, D. and Sutcliffe, H., J. Fluorine Chem., 1984, vol. 25, p. 505. https://doi.org/10.1016/S0022-1139(00)81482-7
  24. LaZerte, J.D., Hals, L.J., Reid, T.S., and Smith, G.H., J. Am. Chem. Soc., 1953, vol. 75, p. 4525. https://doi.org/10.1021/ja01114a040
  25. Krusic, P.J., Marchione, A.A., and Roe, D.C., J. Fluorine Chem., 2005, vol. 126, p. 1510. https://doi.org/10.1016/j.jfluchem.2005.08.016
  26. Blake, P.G. and Pritchard, H., J. Chem. Soc. B, 1967, vol. 1, p. 282.
  27. Altarawneh, M., Almatarneh, M.H., and Dlugogorski, B.Z., Chemosphere, 2022, vol. 286, Pt. 2, p. 131685. https://doi.org/10.1016/j.chemosphere.2021.131685
  28. Price, S.J.W. and Sapiano, H.J., Can. J. Chem., 1979, vol. 57, no. 6, p. 685. https://doi.org/10.1139/v79-111
  29. Andreevskii, D.N. and Antonova, Z.A., J. Appl. Chem. USSR, 1982, vol. 55, no. 3, p. 582.

Arquivos suplementares

Arquivos suplementares
Ação
1. JATS XML
2. Fig. 1. Isotherm of complete sublimation of Mo2(PFB)4 suspension at T = 530 K: O – ion current C6F5CO+; ∆ – ion current Mo2(PFB)3+.

Baixar (80KB)
3. Fig. 2. Temperature dependence of the mass spectral equilibrium constant of the reaction (5).

Baixar (57KB)

Declaração de direitos autorais © Российская академия наук, 2024