Lanthanide(III) Complexes Based on Tris(2-pyridyl)phosphine Oxide: First Examples

Capa

Citar

Texto integral

Acesso aberto Acesso aberto
Acesso é fechado Acesso está concedido
Acesso é fechado Somente assinantes

Resumo

A series of mononuclear complexes [Ln(Py3PO)2(NO3)3] · 1.5Me2CO (Ln = Sm, Eu, Gd, Tb, Dy) and [Ln(Py3PO)(TTA)3] (Ln = Eu, Tb; TTA is thenoyltrifluoroacetonate ion) based on tris(2-pyridyl) phosphine oxide (Py3PO) is synthesized and studied. In the synthesized compounds, Py3PO acts as the N,O-chelate ligand resulting in the formation of coordination polyhedra N2O8 and NO7 of the Ln atom in complexes [Ln(Py3PO)2(NO3)3] · 1.5Me2CO and [Ln(Py3PO)(TTA)3], respectively. The complexes of Sm3+, Eu3+, Tb3+ and Dy3+ ions exhibit lanthanide-centered photoluminescence in the solid phase at 300 K. The energy of the T1 triplet level of Py3PO is determined to be 21 900 cm‒1 from the ligand-centered phosphorescence spectrum of the Gd(III) complex at 77 K. Among the complexes with the NO3 ions, Py3PO exhibits the highest sensibilizing ability toward Tb3+, whereas the ligand environment in the complexes with the TTAions most efficiently sensibilizes the Eu3+ ion luminescence.

Texto integral

Acesso é fechado

Sobre autores

Yu. Bryleva

Nikolaev Institute of Inorganic Chemistry of the Siberian Branch of the Russian Academy of Sciences

Autor responsável pela correspondência
Email: bryleva@niic.nsc.ru
Rússia, Novosibirsk

L. Glinskaya

Nikolaev Institute of Inorganic Chemistry of the Siberian Branch of the Russian Academy of Sciences

Email: bryleva@niic.nsc.ru
Rússia, Novosibirsk

K. Yzhikova

Nikolaev Institute of Inorganic Chemistry of the Siberian Branch of the Russian Academy of Sciences

Email: bryleva@niic.nsc.ru
Rússia, Novosibirsk

A. Artemyev

Nikolaev Institute of Inorganic Chemistry of the Siberian Branch of the Russian Academy of Sciences

Email: bryleva@niic.nsc.ru
Rússia, Novosibirsk

M. Rakhmanova

Nikolaev Institute of Inorganic Chemistry of the Siberian Branch of the Russian Academy of Sciences

Email: bryleva@niic.nsc.ru
Rússia, Novosibirsk

A. Baranov

Nikolaev Institute of Inorganic Chemistry of the Siberian Branch of the Russian Academy of Sciences

Email: bryleva@niic.nsc.ru
Rússia, Novosibirsk

Bibliografia

  1. Nehra K., Dalal A., Hooda A. et al. // J. Mol. Struct. 2022. V. 1249. P. 131531. https://doi.org/10.1016/j.molstruc.2021.131531
  2. Bao G. // J. Lumin. 2020. V. 228. P. 117622. https://doi.org/10.1016/j.jlumin.2020.117622
  3. Ilichev V.A., Rogozhin A.F., Rumyantcev R.V. et al. // Inorg. Chem. 2023. V. 62. P. 12625. https://doi.org/10.1021/acs.inorgchem.3c01349
  4. Hasegawa M., Ohmagari H., Tanaka H., Machida K. // J. Photochem. Photobiol. C. 2022. V. 50. P. 100484. https://doi.org/10.1016/j.jphotochemrev.2022.100484
  5. Li P., Li H. // Coord. Chem. Rev. 2021. V. 441. P. 213988. https://doi.org/10.1016/j.ccr.2021.213988
  6. Bao G., Wen S., Lin G. et al. // Coord. Chem. Rev. 2021. V. 429. P. 213642. https://doi.org/10.1016/j.ccr.2020.213642
  7. Bodman S.E., Butler S.J. // Chem. Sci. 2021. V. 12. P. 2716. https://doi.org/10.1039/D0SC05419D
  8. Parker D., Fradgley J.D., Wong K.-L. // Chem. Soc. Rev. 2021. V. 50. P. 8193. https://doi.org/10.1039/D1CS00310K
  9. Singh A.K. // Coord. Chem. Rev. 2022. V. 455. P. 214365. https://doi.org/10.1016/j.ccr.2021.214365
  10. Hasegawa Y., Kitagawa Y. // J. Photochem. Photobiol. C. 2022. V. 51. P. 100485. https://doi.org/10.1016/j.jphotochemrev.2022.100485
  11. Xu L., Hao Y., Yang X. et al. // Chem. Eur. J. 2021. V. 27. P. 10717. https://doi.org/10.1002/chem.202101224
  12. Miyazaki S., Miyata K., Sakamoto H. et al. // J. Phys. Chem. A. 2020. V. 124. P. 6601. https://doi.org/10.1021/acs.jpca.0c02224
  13. Rogozhin A.F., Silantyeva L.I., Yablonskiy A.N. et al. // Opt. Mater. 2021. V. 118. P. 111241. https://doi.org/10.1016/j.optmat.2021.111241
  14. Kitagawa Y., Naito A., Fushimi K., Hasegawa Y. // Chem. Eur. J. 2021. V. 27. P. 2279. https://doi.org/10.1002/chem.202004485
  15. Vats B.G., Kannan S., Kumar M., Drew M.G.B. // ChemistrySelect. 2017. V. 2. P. 3683. https://doi.org/10.1002/slct.201700437
  16. Charbonnière L.J., Ziessel R., Montalti M. et al. // J. Am. Chem. Soc. 2002. V. 124. P. 7779. https://doi.org/10.1021/ja0200847
  17. Bryleva Y.A., Komarov V.Yu., Glinskaya L.A. et al. // New J. Chem. 2023. V. 47. P. 10446. https://doi.org/10.1039/D3NJ01119D
  18. Bryleva Y.A., Artem’ev A.V., Glinskaya L.A. et al. // New J. Chem. 2021. V. 45. P. 13869. https://doi.org/10.1039/D1NJ02441H
  19. Bryleva Yu.A., Artem’ev A.V., Glinskaya L.A. et al. // J. Struct. Chem. 2021. V. 62. P. 265. https://doi.org/10.1134/S0022476621020116
  20. Charles R.G., Ohlmann R.C. // J. Inorg. Nucl. Chem. 1965. V. 27. P. 255. https://doi.org/10.1016/0022-1902(65)80222-6
  21. Tikhonova V.D., Fadeeva V.P., Nikulicheva O.N. et al. // Chem. Sustain. Dev. 2022. V. 30. P. 640. https://doi.org/10.15372/CSD2022427
  22. APEX2 (version 2.0), Bruker Advanced X-ray Solutions. Madison (WI, USA): Bruker AXS Inc., 2000‒2012.
  23. Sheldrick G.M. // Acta Crystallogr. A. 2015. V. 71. P. 3. https://doi.org/10.1107/S2053273314026370
  24. Sheldrick G.M. // Acta Crystallogr. C. 2015. V. 71. P. 3. https://doi.org/10.1107/S2053229614024218
  25. Dolomanov O.V., Bourhis L.J., Gildea R.J. et al. // J. Appl. Crystallogr. 2009. V. 42. P. 339. https://doi.org/10.1107/S0021889808042726
  26. Ferraro J.R. // J. Mol. Spectrosc. 1960. V. 4. P. 99. https://doi.org/10.1016/0022-2852(60)90071-0
  27. Nakamoto K. // Handbook of Vibrational Spectroscopy. John Wiley & Sons, Ltd., 2006. https://doi.org/10.1002/0470027320.s4104
  28. Hudson R.L., Gerakines P.A., Ferrante R.F. // Spectrochim. Acta. A. 2018. V. 193. P. 33. https://doi.org/10.1016/j.saa.2017.11.055
  29. Gupta K., Patra A.K. // Eur. J. Inorg. Chem. 2018. V. 2018. P. 1882. https://doi.org/10.1002/ejic.201701495
  30. Xu C.-J., Li B.-G., Wan J.-T., Bu Z.-Y. // Spectrochim. Acta. A. 2011. V. 82. P. 159. https://doi.org/10.1016/j.saa.2011.07.027
  31. Deacon G.B., Green J.H.S. // Spectrochim. Acta. A. 1968. V. 24. P. 845. https://doi.org/10.1016/0584-8539(68)80183-7
  32. Wen H.-R., Hu J.-J., Yang K. et al. // Inorg. Chem. 2020. V. 59. P. 2811. https://doi.org/10.1021/acs.inorgchem.9b03164
  33. Nehra K., Dalal A., Hooda A. et al. // Inorg. Chim. Acta. 2022. V. 539. P. 121007. https://doi.org/10.1016/j.ica.2022.121007
  34. Kai J., Parra D.F., Brito H.F. // J. Mater. Chem. 2008. V. 18. P. 4549. https://doi.org/10.1039/B808080A
  35. Biju S., Reddy M.L.P., Cowley A.H., Vasudevan K.V. // Cryst. Growth Des. 2009. V. 9. P. 3562. https://doi.org/10.1021/cg900304g
  36. Werts M.H.V., Jukes R.T.F., Verhoeven J.W. // Phys. Chem. Chem. Phys. 2002. V. 4. P. 1542. https://doi.org/10.1039/B107770H
  37. Latva M., Takalo H., Mukkala V.-M. et al. // J. Lumin. 1997. V. 75. P. 149. https://doi.org/10.1016/S0022-2313(97)00113-0
  38. Murov S.L., Carmichael I., Hug G.L. Handbook of Photochemistry. New York Basel: Marcel Dekker, Inc., 1993.
  39. Lyubov D.M., Mahrova T.V., Cherkasov A.V. et al. // Eur. J. Inorg. Chem. 2023. V. 26. P. e202300292 https://doi.org/10.1002/ejic.202300292.
  40. Tsaryuk V.I., Zhuravlev K.P., Szostak R., Vologzhanina A.V. // J. Struct. Chem. 2020. V. 61. P. 1026. https://doi.org/10.1134/S0022476620070045
  41. Li Y., Yu C., Wang Y. et al. // Polyhedron. 2023. V. 246. P. 116666. https://doi.org/10.1016/j.poly.2023.116666
  42. Kudyakova Y.S., Slepukhin P.A., Valova M.S. et al. // J. Mol. Struct. 2021. V. 1226. P. 129331. https://doi.org/10.1016/j.molstruc.2020.129331
  43. Ivanova E.A., Smirnova K.S., Pozdnyakov I.P. et al. // Inorg. Chim. Acta. 2023. V. 557. P. 121697. https://doi.org/10.1016/j.ica.2023.121697
  44. Gusev A., Kiskin M., Lutsenko I. et al. // J. Lumin. 2021. V. 238. P. 118305. https://doi.org/10.1016/j.jlumin.2021.118305
  45. Lima G.B.V., Bueno J.C., Silva A.F. et al. // J. Lumin. 2020. V. 219. P. 116884. https://doi.org/10.1016/j.jlumin.2019.116884

Arquivos suplementares

Arquivos suplementares
Ação
1. JATS XML
2. Fig. 1. TG, DTA and DTG curves for complex I

Baixar (102KB)
3. Fig. 2. Molecular structures of complexes II (a) and VI (b). H atoms are not given. Thermal ellipsoids are shown at the level of 40% probability

Baixar (589KB)
4. Fig. 3. Projection of crystal structure II onto the (010) plane illustrating short contacts (shown as dashed lines). H atoms are not shown

Baixar (429KB)
5. Fig. 4. Projection of the crystal structure of VI on the plane (100) illustrating the short contacts between the molecules of the complex (shown in dashed lines)

Baixar (593KB)
6. Fig. 5. Normalised FL excitation (dashed line) and emission (continuous line) spectra of complexes I, II, IV, V (a) and VI, VII (b) in the solid phase at 300 K with the designation of f-f transitions in Ln3+ ions

Baixar (269KB)
7. Fig. 6. Phosphorescence spectrum of complex III in the solid phase at 77 K

Baixar (82KB)

Declaração de direitos autorais © Российская академия наук, 2024