Development of the Cluster Chemistry, Supramolecular Chemistry and Chemistry of Metal-Organic Frameworks by Professor Vladimir P. Fedin and His School

Capa

Citar

Texto integral

Acesso aberto Acesso aberto
Acesso é fechado Acesso está concedido
Acesso é fechado Somente assinantes

Resumo

The article briefly summarizes the main scientific directions contributed to and developed by the outstanding scientist—a leader in the field of coordination chemistry, cluster chemistry, supramolecular chemistry and chemistry of metal-organic coordination polymers, Corresponding Member of the Russian Academy of Sciences Vladimir Petrovich Fedin.

Texto integral

Acesso é fechado

Sobre autores

M. Sokolov

Nikolaev Institute of Inorganic Chemistry, Siberian Branch of the Russian Academy of Sciences

Autor responsável pela correspondência
Email: caesar@niic.nsc.ru
Rússia, Novosibirsk

D. Dybtsev

Nikolaev Institute of Inorganic Chemistry, Siberian Branch of the Russian Academy of Sciences

Email: dan@niic.nsc.ru
Rússia, Novosibirsk

Bibliografia

  1. Lemenovskii D.A., Fedin V.P. // J. Organometal. Chem. 1977. V. 132. P. 11.
  2. Müller A., Fedin V., Hegetschweiler K., Amrein W. // J. Chem. Soc. Chem. Commun. 1992. № 24. P. 1795.
  3. Sokolov N.M., Kalinina I.V., Peresypkina E.V. et al. // Angew. Chem. Int. Ed. 2008. V. 47. P. 1465.
  4. Müller A., Fedin V.P., Kuhlmann C. et al. // Chem. Commun. 1999. P. 1189.
  5. Izarova N.V., Sokolov M.N., Kado E. et al. // Russ. Chem. Bull. 2004. V. 53. № 7. P. 1503.
  6. Fedin V.P., Virovets A.V., Kalinina I.V. et al. // Eur. J. Inorg. Chem. 2000. P. 2341.
  7. Fedin V.P., Kalinina I.V., Virovets A.V. et al. // Russ. Chem. Bull. 2001. V. 50. № 9. P. 1525.
  8. Sokolov M.N., Dybtsev D.N., Fedin V.P. // Russ. Chem. Bull. 2003. V. 52. № 5. P. 1041.
  9. Samsonenko D.G., Lipkowksi J., Gerasko O.A. et al. // Eur. J. Inorg. Chem. 2002. P. 2380.
  10. Gerasko O.A., Mainicheva E.A., Naumov D.Yu. et al. // Inorg. Chem. 2005. V. 44. P. 4133.
  11. Sokolov M.N., Virovets A.V., Dybtsev D.N. et al. // Angew. Chem., Int. Ed. 2000. V. 39. P. 1659.
  12. Eddaoudi M., Kim J., Rosi N. et al. // Science. 2002. V. 295, P. 469.
  13. Noro S., Kitagawa S., Kondo M. et al. // Angew. Chem., Int. Ed. 2000. V. 39 P. 2081.
  14. Férey G., Mellot-Draznieks C., Serre C. et al. // Science. 2005. V. 309. P. 2040.
  15. Yutkin, M.P., Dybtsev, D.N., and Fedin, V.P. // Usp. Khim. 2011. V. 80. P. 1061.
  16. Dybtsev D.N., Nuzhdin A.L., Chun H. et al. // Angew. Chem., Int. Ed. 2006. V. 45. P. 916.
  17. Nuzhdin A.L., Dybtsev D.N., Bryliakov K.P. et al. // J. Am. Chem. Soc. 2007. V. 129. P. 12958.
  18. Blake A.J., Champness N.R., Hubberstey P. et al. // Coord. Chem. Rev. 1999. V. 183. P. 117.
  19. Dybtsev D.N., Sapianik A.A., Fedin V.P. // Mendeleev Commun. 2017. V. 27. P. 321.
  20. Sapianik A.A., Fedin V.P. // Russ. J. Coord. Chem. 2020. V. 46. P. 443.
  21. Dybtsev D.N., Samsonenko D.G., Fedin V.P. // Russ. J. Coord. Chem. 2016. V. 42. P. 557.
  22. Agafonov M.A., Alexandrov V.E., Artyukhova N.A. et al. // J. Struc. Chem. 2022. V. 63. P. 671.
  23. Lysova A.A., Samsonenko D.G., Dorovatovskii P.V. et al. // J. Am. Chem. Soc. 2019. V. 141. P. 17260.
  24. Lysova A.A., Samsonenko D.G., Kovalenko K.A. et al. // Angew. Chem., Int. Ed. 2020. V. 59. P. 20249.
  25. Yu X., Ryadun A.A., Pavlov D.I. et al. // Angew. Chem. Int. Ed. 2023. V. 62. P. 202306680.
  26. Yu X., Ryadun A.A., Potapov A.S., Fedin V.P. et al. // J. Hazard. Mater. 2023. V. 452. P. 131289.
  27. Lysova A.A., Kovalenko K.A., Nizovtsev A.S. et al. // Chem. Eng. J. 2023. V. 453. P. 139642.
  28. Yu X., Ryadun A.A., Pavlov D.I. et al. // Adv. Mater. 2024. V. 36. P. 2311939.
  29. Gao E., Wu S., Wang J. et al. // Adv. Opt. Mater. 2020. V. 8. P. 1901659.

Arquivos suplementares

Arquivos suplementares
Ação
1. JATS XML
2. V.P. Fedin

Baixar (278KB)
3. Scheme 1

Baixar (57KB)
4. Fig. 1. Crystal structures of the adducts {[SiW11O39]2[Mo3S4(H2O)3(OH)]2}10- (left), {[P2W17O61]2[Mo3S4(H2O)3(OH)]2}14- (center), and {[Mo3S4(H2O)5]4[SiW10O36]4}16- (right).

Baixar (236KB)
5. Fig. 2. View of the porous coordination framework constructed with [W4Q4(CN)12]6- chalcocyanide clusters (Q = S, Te; cluster fragments are shown as cubes).

Baixar (208KB)
6. Fig. 3. The molecule of cucurbituril C36O36N24O12.

Baixar (209KB)
7. Fig. 4. Supramolecular associations of cucurbituril with one (left) or two (right) cluster aquacomplexes [M3Q4(H2O)9]4+ (M = Mo, W; Q = S, Se).

Baixar (236KB)
8. Fig. 5. A 32-core Ga(III) aquacomplex isolated through the formation of a supramolecular adduct with cucurbituril.

Baixar (191KB)
9. Fig. 6. Formation of layered dichalcogenide analogs (top) and intercalates with mercury atom (bottom) based on supramolecular chains of cucurbituril and chalcogenide cluster complexes.

Baixar (446KB)
10. Fig. 7. Homochiral porous MOCPs with modulated cavity size and chiral center structure.

Baixar (333KB)
11. Fig. 8. Separation of natural gas components (methane, ethane, propane) on mesoporous metal-organic coordination polymer NIIC-20 series.

Baixar (320KB)

Declaração de direitos autorais © Российская академия наук, 2024