Development of the Cluster Chemistry, Supramolecular Chemistry and Chemistry of Metal-Organic Frameworks by Professor Vladimir P. Fedin and His School

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

The article briefly summarizes the main scientific directions contributed to and developed by the outstanding scientist—a leader in the field of coordination chemistry, cluster chemistry, supramolecular chemistry and chemistry of metal-organic coordination polymers, Corresponding Member of the Russian Academy of Sciences Vladimir Petrovich Fedin.

Full Text

Restricted Access

About the authors

M. N. Sokolov

Nikolaev Institute of Inorganic Chemistry, Siberian Branch of the Russian Academy of Sciences

Author for correspondence.
Email: caesar@niic.nsc.ru
Russian Federation, Novosibirsk

D. N. Dybtsev

Nikolaev Institute of Inorganic Chemistry, Siberian Branch of the Russian Academy of Sciences

Email: dan@niic.nsc.ru
Russian Federation, Novosibirsk

References

  1. Lemenovskii D.A., Fedin V.P. // J. Organometal. Chem. 1977. V. 132. P. 11.
  2. Müller A., Fedin V., Hegetschweiler K., Amrein W. // J. Chem. Soc. Chem. Commun. 1992. № 24. P. 1795.
  3. Sokolov N.M., Kalinina I.V., Peresypkina E.V. et al. // Angew. Chem. Int. Ed. 2008. V. 47. P. 1465.
  4. Müller A., Fedin V.P., Kuhlmann C. et al. // Chem. Commun. 1999. P. 1189.
  5. Izarova N.V., Sokolov M.N., Kado E. et al. // Russ. Chem. Bull. 2004. V. 53. № 7. P. 1503.
  6. Fedin V.P., Virovets A.V., Kalinina I.V. et al. // Eur. J. Inorg. Chem. 2000. P. 2341.
  7. Fedin V.P., Kalinina I.V., Virovets A.V. et al. // Russ. Chem. Bull. 2001. V. 50. № 9. P. 1525.
  8. Sokolov M.N., Dybtsev D.N., Fedin V.P. // Russ. Chem. Bull. 2003. V. 52. № 5. P. 1041.
  9. Samsonenko D.G., Lipkowksi J., Gerasko O.A. et al. // Eur. J. Inorg. Chem. 2002. P. 2380.
  10. Gerasko O.A., Mainicheva E.A., Naumov D.Yu. et al. // Inorg. Chem. 2005. V. 44. P. 4133.
  11. Sokolov M.N., Virovets A.V., Dybtsev D.N. et al. // Angew. Chem., Int. Ed. 2000. V. 39. P. 1659.
  12. Eddaoudi M., Kim J., Rosi N. et al. // Science. 2002. V. 295, P. 469.
  13. Noro S., Kitagawa S., Kondo M. et al. // Angew. Chem., Int. Ed. 2000. V. 39 P. 2081.
  14. Férey G., Mellot-Draznieks C., Serre C. et al. // Science. 2005. V. 309. P. 2040.
  15. Yutkin, M.P., Dybtsev, D.N., and Fedin, V.P. // Usp. Khim. 2011. V. 80. P. 1061.
  16. Dybtsev D.N., Nuzhdin A.L., Chun H. et al. // Angew. Chem., Int. Ed. 2006. V. 45. P. 916.
  17. Nuzhdin A.L., Dybtsev D.N., Bryliakov K.P. et al. // J. Am. Chem. Soc. 2007. V. 129. P. 12958.
  18. Blake A.J., Champness N.R., Hubberstey P. et al. // Coord. Chem. Rev. 1999. V. 183. P. 117.
  19. Dybtsev D.N., Sapianik A.A., Fedin V.P. // Mendeleev Commun. 2017. V. 27. P. 321.
  20. Sapianik A.A., Fedin V.P. // Russ. J. Coord. Chem. 2020. V. 46. P. 443.
  21. Dybtsev D.N., Samsonenko D.G., Fedin V.P. // Russ. J. Coord. Chem. 2016. V. 42. P. 557.
  22. Agafonov M.A., Alexandrov V.E., Artyukhova N.A. et al. // J. Struc. Chem. 2022. V. 63. P. 671.
  23. Lysova A.A., Samsonenko D.G., Dorovatovskii P.V. et al. // J. Am. Chem. Soc. 2019. V. 141. P. 17260.
  24. Lysova A.A., Samsonenko D.G., Kovalenko K.A. et al. // Angew. Chem., Int. Ed. 2020. V. 59. P. 20249.
  25. Yu X., Ryadun A.A., Pavlov D.I. et al. // Angew. Chem. Int. Ed. 2023. V. 62. P. 202306680.
  26. Yu X., Ryadun A.A., Potapov A.S., Fedin V.P. et al. // J. Hazard. Mater. 2023. V. 452. P. 131289.
  27. Lysova A.A., Kovalenko K.A., Nizovtsev A.S. et al. // Chem. Eng. J. 2023. V. 453. P. 139642.
  28. Yu X., Ryadun A.A., Pavlov D.I. et al. // Adv. Mater. 2024. V. 36. P. 2311939.
  29. Gao E., Wu S., Wang J. et al. // Adv. Opt. Mater. 2020. V. 8. P. 1901659.

Supplementary files

Supplementary Files
Action
1. JATS XML
2. V.P. Fedin

Download (278KB)
3. Scheme 1

Download (57KB)
4. Fig. 1. Crystal structures of the adducts {[SiW11O39]2[Mo3S4(H2O)3(OH)]2}10- (left), {[P2W17O61]2[Mo3S4(H2O)3(OH)]2}14- (center), and {[Mo3S4(H2O)5]4[SiW10O36]4}16- (right).

Download (236KB)
5. Fig. 2. View of the porous coordination framework constructed with [W4Q4(CN)12]6- chalcocyanide clusters (Q = S, Te; cluster fragments are shown as cubes).

Download (208KB)
6. Fig. 3. The molecule of cucurbituril C36O36N24O12.

Download (209KB)
7. Fig. 4. Supramolecular associations of cucurbituril with one (left) or two (right) cluster aquacomplexes [M3Q4(H2O)9]4+ (M = Mo, W; Q = S, Se).

Download (236KB)
8. Fig. 5. A 32-core Ga(III) aquacomplex isolated through the formation of a supramolecular adduct with cucurbituril.

Download (191KB)
9. Fig. 6. Formation of layered dichalcogenide analogs (top) and intercalates with mercury atom (bottom) based on supramolecular chains of cucurbituril and chalcogenide cluster complexes.

Download (446KB)
10. Fig. 7. Homochiral porous MOCPs with modulated cavity size and chiral center structure.

Download (333KB)
11. Fig. 8. Separation of natural gas components (methane, ethane, propane) on mesoporous metal-organic coordination polymer NIIC-20 series.

Download (320KB)

Copyright (c) 2024 Российская академия наук