Development of the Cluster Chemistry, Supramolecular Chemistry and Chemistry of Metal-Organic Frameworks by Professor Vladimir P. Fedin and His School
- Authors: Sokolov M.N.1, Dybtsev D.N.1
-
Affiliations:
- Nikolaev Institute of Inorganic Chemistry, Siberian Branch of the Russian Academy of Sciences
- Issue: Vol 50, No 9 (2024)
- Pages: 535-543
- Section: Articles
- URL: https://rjonco.com/0132-344X/article/view/667660
- DOI: https://doi.org/10.31857/S0132344X24090017
- EDN: https://elibrary.ru/LXUZED
- ID: 667660
Cite item
Abstract
The article briefly summarizes the main scientific directions contributed to and developed by the outstanding scientist—a leader in the field of coordination chemistry, cluster chemistry, supramolecular chemistry and chemistry of metal-organic coordination polymers, Corresponding Member of the Russian Academy of Sciences Vladimir Petrovich Fedin.
Full Text

About the authors
M. N. Sokolov
Nikolaev Institute of Inorganic Chemistry, Siberian Branch of the Russian Academy of Sciences
Author for correspondence.
Email: caesar@niic.nsc.ru
Russian Federation, Novosibirsk
D. N. Dybtsev
Nikolaev Institute of Inorganic Chemistry, Siberian Branch of the Russian Academy of Sciences
Email: dan@niic.nsc.ru
Russian Federation, Novosibirsk
References
- Lemenovskii D.A., Fedin V.P. // J. Organometal. Chem. 1977. V. 132. P. 11.
- Müller A., Fedin V., Hegetschweiler K., Amrein W. // J. Chem. Soc. Chem. Commun. 1992. № 24. P. 1795.
- Sokolov N.M., Kalinina I.V., Peresypkina E.V. et al. // Angew. Chem. Int. Ed. 2008. V. 47. P. 1465.
- Müller A., Fedin V.P., Kuhlmann C. et al. // Chem. Commun. 1999. P. 1189.
- Izarova N.V., Sokolov M.N., Kado E. et al. // Russ. Chem. Bull. 2004. V. 53. № 7. P. 1503.
- Fedin V.P., Virovets A.V., Kalinina I.V. et al. // Eur. J. Inorg. Chem. 2000. P. 2341.
- Fedin V.P., Kalinina I.V., Virovets A.V. et al. // Russ. Chem. Bull. 2001. V. 50. № 9. P. 1525.
- Sokolov M.N., Dybtsev D.N., Fedin V.P. // Russ. Chem. Bull. 2003. V. 52. № 5. P. 1041.
- Samsonenko D.G., Lipkowksi J., Gerasko O.A. et al. // Eur. J. Inorg. Chem. 2002. P. 2380.
- Gerasko O.A., Mainicheva E.A., Naumov D.Yu. et al. // Inorg. Chem. 2005. V. 44. P. 4133.
- Sokolov M.N., Virovets A.V., Dybtsev D.N. et al. // Angew. Chem., Int. Ed. 2000. V. 39. P. 1659.
- Eddaoudi M., Kim J., Rosi N. et al. // Science. 2002. V. 295, P. 469.
- Noro S., Kitagawa S., Kondo M. et al. // Angew. Chem., Int. Ed. 2000. V. 39 P. 2081.
- Férey G., Mellot-Draznieks C., Serre C. et al. // Science. 2005. V. 309. P. 2040.
- Yutkin, M.P., Dybtsev, D.N., and Fedin, V.P. // Usp. Khim. 2011. V. 80. P. 1061.
- Dybtsev D.N., Nuzhdin A.L., Chun H. et al. // Angew. Chem., Int. Ed. 2006. V. 45. P. 916.
- Nuzhdin A.L., Dybtsev D.N., Bryliakov K.P. et al. // J. Am. Chem. Soc. 2007. V. 129. P. 12958.
- Blake A.J., Champness N.R., Hubberstey P. et al. // Coord. Chem. Rev. 1999. V. 183. P. 117.
- Dybtsev D.N., Sapianik A.A., Fedin V.P. // Mendeleev Commun. 2017. V. 27. P. 321.
- Sapianik A.A., Fedin V.P. // Russ. J. Coord. Chem. 2020. V. 46. P. 443.
- Dybtsev D.N., Samsonenko D.G., Fedin V.P. // Russ. J. Coord. Chem. 2016. V. 42. P. 557.
- Agafonov M.A., Alexandrov V.E., Artyukhova N.A. et al. // J. Struc. Chem. 2022. V. 63. P. 671.
- Lysova A.A., Samsonenko D.G., Dorovatovskii P.V. et al. // J. Am. Chem. Soc. 2019. V. 141. P. 17260.
- Lysova A.A., Samsonenko D.G., Kovalenko K.A. et al. // Angew. Chem., Int. Ed. 2020. V. 59. P. 20249.
- Yu X., Ryadun A.A., Pavlov D.I. et al. // Angew. Chem. Int. Ed. 2023. V. 62. P. 202306680.
- Yu X., Ryadun A.A., Potapov A.S., Fedin V.P. et al. // J. Hazard. Mater. 2023. V. 452. P. 131289.
- Lysova A.A., Kovalenko K.A., Nizovtsev A.S. et al. // Chem. Eng. J. 2023. V. 453. P. 139642.
- Yu X., Ryadun A.A., Pavlov D.I. et al. // Adv. Mater. 2024. V. 36. P. 2311939.
- Gao E., Wu S., Wang J. et al. // Adv. Opt. Mater. 2020. V. 8. P. 1901659.
Supplementary files
Supplementary Files
Action
1.
JATS XML
Download (278KB)
Download (57KB)
4.
Fig. 1. Crystal structures of the adducts {[SiW11O39]2[Mo3S4(H2O)3(OH)]2}10- (left), {[P2W17O61]2[Mo3S4(H2O)3(OH)]2}14- (center), and {[Mo3S4(H2O)5]4[SiW10O36]4}16- (right).
Download (236KB)
5.
Fig. 2. View of the porous coordination framework constructed with [W4Q4(CN)12]6- chalcocyanide clusters (Q = S, Te; cluster fragments are shown as cubes).
Download (208KB)
Download (209KB)
7.
Fig. 4. Supramolecular associations of cucurbituril with one (left) or two (right) cluster aquacomplexes [M3Q4(H2O)9]4+ (M = Mo, W; Q = S, Se).
Download (236KB)
8.
Fig. 5. A 32-core Ga(III) aquacomplex isolated through the formation of a supramolecular adduct with cucurbituril.
Download (191KB)
9.
Fig. 6. Formation of layered dichalcogenide analogs (top) and intercalates with mercury atom (bottom) based on supramolecular chains of cucurbituril and chalcogenide cluster complexes.
Download (446KB)
Download (333KB)
11.
Fig. 8. Separation of natural gas components (methane, ethane, propane) on mesoporous metal-organic coordination polymer NIIC-20 series.
Download (320KB)
