Rhenium Iodide Cluster Re3I9 as a Precursor in the Synthesis of [Re(CO)5I] and ((н-C4H9)4N)2[Re2Cl8]

Capa

Citar

Texto integral

Acesso aberto Acesso aberto
Acesso é fechado Acesso está concedido
Acesso é fechado Somente assinantes

Resumo

The reduction of rhenium iodide cluster Re3I9 to [Re(CO)5I] (55% yield) was observed in the presence of concentrated HCl and HCOOH at 130°C. In a dimethylammonium chloride [(CH3)2NH2]Cl melt, the triangular cluster polymer Re3I9 is transformed into the dianionic binuclear cluster complex [Re2Cl8]2–, which was isolated as the tetrabutylammonium salt ((n-C4H9)4N)2[Re2Cl8] in 46% yield. The structure of the complex [Re(CO)5I] was confirmed by powder X-ray diffraction, energy dispersive spectroscopy, IR spectroscopy, and Raman spectroscopy. ((n-C4H9)4N)2[Re2Cl8] was identified using elemental analysis, energy dispersive spectroscopy, and IR and Raman spectroscopy. An acetonitrile solution of ((n-C4H9)4N)2[Re2Cl8] was characterized by the mass spectrum and characteristic UV-Vis spectrum.

Texto integral

Acesso é fechado

Sobre autores

E. Gorbachuk

Arbuzov Institute of Organic and Physical Chemistry, FRC Kazan Scientific Center, Russian Academy of Sciences; Alexander Butlerov Institute of Chemistry, Kazan (Volga Region) Federal University

Email: yakhvar@iopc.ru
Rússia, Kazan; Kazan

M. Mikhaylov

Nikolaev Institute of Inorganic Chemistry, Siberian Branch, Russian Academy of Sciences

Email: yakhvar@iopc.ru
Rússia, Novosibirsk

D. Sheven

Nikolaev Institute of Inorganic Chemistry, Siberian Branch, Russian Academy of Sciences

Email: yakhvar@iopc.ru
Rússia, Novosibirsk

M. Sokolov

Nikolaev Institute of Inorganic Chemistry, Siberian Branch, Russian Academy of Sciences

Email: yakhvar@iopc.ru
Rússia, Novosibirsk

D. Yakhvarov

Arbuzov Institute of Organic and Physical Chemistry, FRC Kazan Scientific Center, Russian Academy of Sciences; Alexander Butlerov Institute of Chemistry, Kazan (Volga Region) Federal University

Autor responsável pela correspondência
Email: yakhvar@iopc.ru
Rússia, Kazan; Kazan

Bibliografia

  1. Cotton F.A., Curtis N.F., Johnson B.F.G., Robinson W.R. // Inorg. Chem. 1965. V. 4. № 3. P. 326.
  2. Yarovoy S.S., Gayfulin Y.M., Smolentsev A.I. // Inorg. Chem. 2021. V. 60. № 8. P. 5980.
  3. Lunk H.J., Drobot D.V., Hartl H. // ChemTexts. 2021. V. 7. P. 1.
  4. Anderson J.S. // Q. Rev Chem. Soc. 1947. V. 1. № 4. P. 331.
  5. Abu-Abdoun I.I. // Des. Monomers Polym. 2000. V. 3. № 2. P. 171.
  6. Zhao W.-G., Hua R. // Eur. J. Org. Chem. 2006. P. 5495.
  7. Nishiyama Y., Kakushou F., Sonoda N. // Bull. Chem. Soc. Jpn. 2000. V. 73. № 12. P. 2779.
  8. Liu Y., Hua R., Sun H.-B., Qiu X. // Organometallics. 2005. V. 24. № 11. P. 2819.
  9. Kusama H., Yamabe H., Onizawa Y. et al. // Angew. Chem. Int. Ed. 2005. V. 117. № 3. P. 472.
  10. Hirano M., Hirai M., Ito Y. et al. // J. Organomet. Chem. 1998. V. 569. № 1–2. P. 3.
  11. Kuninobu Y., Nishi M., Yudha S. S., Takai K. // Org. Lett. 2008. V. 10. № 14. P. 3009.
  12. Farona M.F., Greenlee W.S. // Chem. Commun. 1975. P. 759.
  13. Jiang J.-L., Gao F., Hua R., Qiu Q. // J. Org. Chem. 2005. V. 70. № 1. P. 381.
  14. Kuninobu Y., Takai K. // Chem. Rev. 2011. V. 111. № 3. P. 1938.
  15. Dilworth J.R. // Coord. Chem. Rev. 2021. V. 436. P. 213822.
  16. Mkhatshwa M., Moremi J.M., Makgopa K., Manicum A.L.E. // Int. J. Mol. Sci. 2021. V. 22. № 12. P. 6546.
  17. Schmidt S. P. Trogler W. C. Basolo F. // Inorganic Syntheses: Reagents for Transition Metal Complex and Organometallic Syntheses. 1990. V. 28. 160 p.
  18. Hernández J.G., Butler I.S., Frišči T. // Chem. Sci. 2014. V. 5. № 9. P. 3576.
  19. Stolzenberg A.M., Muetterties E.L. // J. Am. Chem. Soc. 1983. V. 105. № 4. P. 822.
  20. Crocker L.S., Gould G.L., Heinekey D.M. // J. Organomet. Chem. 1988. V. 342. № 2. P. 243.
  21. Hieber W., Schulten H. // Z. Anorg. Allg. Chem. 1939. V. 243. №. 2. P. 164.
  22. Hieber W., Fuchs H. // Z. Anorg. Allg. Chem. 1941. V. 248. № 3. P. 256.
  23. Kirkham W.J., Osborne A.G., Nyholm R.S., Stiddard M.H.B. // J. Chem. Soc. (Resumed) 1965. V. 88. P. 550.
  24. Hieber W. // Adv. Organomet. Chem. 1970. V. 8. P. 1.
  25. Wunderlich G., Hartmann H., Andreeff M., Kotzerke J. // Appl. Radiat. Isot. 2008. V. 66. № 12. P. 1876.
  26. Miroslavov A.E., Alekseev I.E., Tyupina M.Y. et al. // J. Radioanal. Nucl. Chem. 2016. V. 308. P. 1039.
  27. Adams R.D., Dhull P., Kaushal M., Smith M.D. // J. Organomet. Chem. 2019. V. 902. P. 120969.
  28. Colton R., Knapp J.E. // Aust. J. Chem. 1972. V. 25. № 1. P. 9.
  29. Shapoval A.N., Bobukhov D.V., Shtemenko A.V. // Ukr. Chem. J. 2008. V. 74. P. 39.
  30. Barder T.J., Walton R.A. // Inorg. Chem. 1982. V. 21. № 6. P. 2510.
  31. Cotton F.A., Murillo C.A., Walton R.A. Multiple Bonds Between Metal Atoms. New York: Springer Science and Business Media, Inc., 2005. 840 p.
  32. Barder T.J., Walton R.A., Cotton F.A., Powell G.L. // Inorg. Synth. 1985. V. 23. P. 116.
  33. Iziumskyi M., Baskevich A., Melnyk S., Shtemenko A. // New J. Chem. 2016. V. 40. № 12. P. 10012.
  34. Maverick A.W., Hammer R.P., Arnold J.A. et al. // Inorg. Synth. 2014. V. 36. P. 217.
  35. Poineau F., Sattelberger A.P., Lu E., Liddle S.T. // Molecular Metal‐Metal Bonds: Compounds, Synthesis, Properties: Wiley, 2015. 175 p.
  36. Cotton F.A., Curtis N.F., Robinson W.R. // Inorg. Chem. 1965. V. 4. № 12. P. 1696.
  37. Brignole A.B., Cotton F.A. // Inorg. Synth. 1971. V. 13. P. 81.
  38. Bailey R.A., McIntyre J.A. // Inorg. Chem. 1966. V. 5. № 11. P. 1940.
  39. Mikhailov M.A., Sukhikh T.S., Sokolov M.N. // Russ. J. Inorg. Chem. 2021. V. 66. P. 969. https://doi.org/10.1134/S0036023621070081
  40. Jung B., Meyer G. // J. Alloys Compd. 1992. V. 183. P. 144.
  41. Jung B., Meyer G. // Z. Anorg. Allg. Chem. 1992. V. 610. № 4. P. 15.
  42. Mikhaylov M.A., Sukhikh T.S., Kompankov N.B., Sokolov M.N. // Polyhedron. 2023. V. 234. Art. 116326.
  43. Petrov P.A., Sukhikh T.S., Nadolinny V.A. et al. // Inorg. Chem. 2021. V. 60. № 9. P. 6746.
  44. Yarovoy S.S., Mirzaeva I.V., Mironov Y.V. et al. // Inorg. Chem. 2022. V. 61. № 31. P. 12442.
  45. Pronin A.S., Gayfulin Y.M., Sukhikh T.S et al. // Inorg. Chem. Front. 2022. V. 9. № 1. P. 186.
  46. Lurie Yu.Yu. Handbook of Analytical Chemistry. M.: Publishing House “Chemistry”, 1965. P. 157.
  47. Bennett M.J., Cotton F.A., Foxman B.M. // Inorg. Chem. 1968. V. 7. № 8. P. 1563.
  48. Adams D.M., Ruff P.W., Russell, D.R. // Faraday Trans. 1991. V. 87. № 12. P. 1831.
  49. Oldham C., Davies J.E.D., Ketteringham A.P. // J. Chem. Soc. D. 1971. V. 11. № 11. Р. 572.
  50. Rouschias G. // Chem. Rev. 1974. V. 74. № 5. P. 531.
  51. Abel E.W., Hargreaves G.B., Wilkinson G. // J. Chem. Soc. 1958. V. 638. P. 3149.
  52. Edwards D.A., Ward R.T. // J. Chem. Soc. A. 1970. P. 1617.
  53. Brauer G. // Handbook of Preparative Inorganic Chemistry. New York: Academic Press Inc., 1963. V. 1. p. 1477.
  54. Sapota A., Skrzypińska-Gawrysiak M. // Chlorek Benzoilu. Podstawy i Metody Oceny Środowiska Pracy. 2012. V. 2. № 2. P. 31.

Arquivos suplementares

Arquivos suplementares
Ação
1. JATS XML
2. Fig. 1. Diffractogram for the obtained powder sample of Re3I9 (shown in black) and theoretically calculated (shown in red) from PCA data for single crystal Re3I9.

Baixar (66KB)
3. Fig. 2. Diffractogram for the obtained powder sample [Re(CO)5I] (shown in black) and theoretically calculated (shown in red) from PCA data for single crystal [Re(CO)5I].

Baixar (56KB)
4. Fig. 3. ESI-MS spectrum of ((n-C4H9)4N)2[Re2Cl8] in CH3CN.

Baixar (227KB)

Declaração de direitos autorais © Российская академия наук, 2024