Rhenium Iodide Cluster Re3I9 as a Precursor in the Synthesis of [Re(CO)5I] and ((н-C4H9)4N)2[Re2Cl8]

封面

如何引用文章

全文:

开放存取 开放存取
受限制的访问 ##reader.subscriptionAccessGranted##
受限制的访问 订阅存取

详细

The reduction of rhenium iodide cluster Re3I9 to [Re(CO)5I] (55% yield) was observed in the presence of concentrated HCl and HCOOH at 130°C. In a dimethylammonium chloride [(CH3)2NH2]Cl melt, the triangular cluster polymer Re3I9 is transformed into the dianionic binuclear cluster complex [Re2Cl8]2–, which was isolated as the tetrabutylammonium salt ((n-C4H9)4N)2[Re2Cl8] in 46% yield. The structure of the complex [Re(CO)5I] was confirmed by powder X-ray diffraction, energy dispersive spectroscopy, IR spectroscopy, and Raman spectroscopy. ((n-C4H9)4N)2[Re2Cl8] was identified using elemental analysis, energy dispersive spectroscopy, and IR and Raman spectroscopy. An acetonitrile solution of ((n-C4H9)4N)2[Re2Cl8] was characterized by the mass spectrum and characteristic UV-Vis spectrum.

全文:

受限制的访问

作者简介

E. Gorbachuk

Arbuzov Institute of Organic and Physical Chemistry, FRC Kazan Scientific Center, Russian Academy of Sciences; Alexander Butlerov Institute of Chemistry, Kazan (Volga Region) Federal University

Email: yakhvar@iopc.ru
俄罗斯联邦, Kazan; Kazan

M. Mikhaylov

Nikolaev Institute of Inorganic Chemistry, Siberian Branch, Russian Academy of Sciences

Email: yakhvar@iopc.ru
俄罗斯联邦, Novosibirsk

D. Sheven

Nikolaev Institute of Inorganic Chemistry, Siberian Branch, Russian Academy of Sciences

Email: yakhvar@iopc.ru
俄罗斯联邦, Novosibirsk

M. Sokolov

Nikolaev Institute of Inorganic Chemistry, Siberian Branch, Russian Academy of Sciences

Email: yakhvar@iopc.ru
俄罗斯联邦, Novosibirsk

D. Yakhvarov

Arbuzov Institute of Organic and Physical Chemistry, FRC Kazan Scientific Center, Russian Academy of Sciences; Alexander Butlerov Institute of Chemistry, Kazan (Volga Region) Federal University

编辑信件的主要联系方式.
Email: yakhvar@iopc.ru
俄罗斯联邦, Kazan; Kazan

参考

  1. Cotton F.A., Curtis N.F., Johnson B.F.G., Robinson W.R. // Inorg. Chem. 1965. V. 4. № 3. P. 326.
  2. Yarovoy S.S., Gayfulin Y.M., Smolentsev A.I. // Inorg. Chem. 2021. V. 60. № 8. P. 5980.
  3. Lunk H.J., Drobot D.V., Hartl H. // ChemTexts. 2021. V. 7. P. 1.
  4. Anderson J.S. // Q. Rev Chem. Soc. 1947. V. 1. № 4. P. 331.
  5. Abu-Abdoun I.I. // Des. Monomers Polym. 2000. V. 3. № 2. P. 171.
  6. Zhao W.-G., Hua R. // Eur. J. Org. Chem. 2006. P. 5495.
  7. Nishiyama Y., Kakushou F., Sonoda N. // Bull. Chem. Soc. Jpn. 2000. V. 73. № 12. P. 2779.
  8. Liu Y., Hua R., Sun H.-B., Qiu X. // Organometallics. 2005. V. 24. № 11. P. 2819.
  9. Kusama H., Yamabe H., Onizawa Y. et al. // Angew. Chem. Int. Ed. 2005. V. 117. № 3. P. 472.
  10. Hirano M., Hirai M., Ito Y. et al. // J. Organomet. Chem. 1998. V. 569. № 1–2. P. 3.
  11. Kuninobu Y., Nishi M., Yudha S. S., Takai K. // Org. Lett. 2008. V. 10. № 14. P. 3009.
  12. Farona M.F., Greenlee W.S. // Chem. Commun. 1975. P. 759.
  13. Jiang J.-L., Gao F., Hua R., Qiu Q. // J. Org. Chem. 2005. V. 70. № 1. P. 381.
  14. Kuninobu Y., Takai K. // Chem. Rev. 2011. V. 111. № 3. P. 1938.
  15. Dilworth J.R. // Coord. Chem. Rev. 2021. V. 436. P. 213822.
  16. Mkhatshwa M., Moremi J.M., Makgopa K., Manicum A.L.E. // Int. J. Mol. Sci. 2021. V. 22. № 12. P. 6546.
  17. Schmidt S. P. Trogler W. C. Basolo F. // Inorganic Syntheses: Reagents for Transition Metal Complex and Organometallic Syntheses. 1990. V. 28. 160 p.
  18. Hernández J.G., Butler I.S., Frišči T. // Chem. Sci. 2014. V. 5. № 9. P. 3576.
  19. Stolzenberg A.M., Muetterties E.L. // J. Am. Chem. Soc. 1983. V. 105. № 4. P. 822.
  20. Crocker L.S., Gould G.L., Heinekey D.M. // J. Organomet. Chem. 1988. V. 342. № 2. P. 243.
  21. Hieber W., Schulten H. // Z. Anorg. Allg. Chem. 1939. V. 243. №. 2. P. 164.
  22. Hieber W., Fuchs H. // Z. Anorg. Allg. Chem. 1941. V. 248. № 3. P. 256.
  23. Kirkham W.J., Osborne A.G., Nyholm R.S., Stiddard M.H.B. // J. Chem. Soc. (Resumed) 1965. V. 88. P. 550.
  24. Hieber W. // Adv. Organomet. Chem. 1970. V. 8. P. 1.
  25. Wunderlich G., Hartmann H., Andreeff M., Kotzerke J. // Appl. Radiat. Isot. 2008. V. 66. № 12. P. 1876.
  26. Miroslavov A.E., Alekseev I.E., Tyupina M.Y. et al. // J. Radioanal. Nucl. Chem. 2016. V. 308. P. 1039.
  27. Adams R.D., Dhull P., Kaushal M., Smith M.D. // J. Organomet. Chem. 2019. V. 902. P. 120969.
  28. Colton R., Knapp J.E. // Aust. J. Chem. 1972. V. 25. № 1. P. 9.
  29. Shapoval A.N., Bobukhov D.V., Shtemenko A.V. // Ukr. Chem. J. 2008. V. 74. P. 39.
  30. Barder T.J., Walton R.A. // Inorg. Chem. 1982. V. 21. № 6. P. 2510.
  31. Cotton F.A., Murillo C.A., Walton R.A. Multiple Bonds Between Metal Atoms. New York: Springer Science and Business Media, Inc., 2005. 840 p.
  32. Barder T.J., Walton R.A., Cotton F.A., Powell G.L. // Inorg. Synth. 1985. V. 23. P. 116.
  33. Iziumskyi M., Baskevich A., Melnyk S., Shtemenko A. // New J. Chem. 2016. V. 40. № 12. P. 10012.
  34. Maverick A.W., Hammer R.P., Arnold J.A. et al. // Inorg. Synth. 2014. V. 36. P. 217.
  35. Poineau F., Sattelberger A.P., Lu E., Liddle S.T. // Molecular Metal‐Metal Bonds: Compounds, Synthesis, Properties: Wiley, 2015. 175 p.
  36. Cotton F.A., Curtis N.F., Robinson W.R. // Inorg. Chem. 1965. V. 4. № 12. P. 1696.
  37. Brignole A.B., Cotton F.A. // Inorg. Synth. 1971. V. 13. P. 81.
  38. Bailey R.A., McIntyre J.A. // Inorg. Chem. 1966. V. 5. № 11. P. 1940.
  39. Mikhailov M.A., Sukhikh T.S., Sokolov M.N. // Russ. J. Inorg. Chem. 2021. V. 66. P. 969. https://doi.org/10.1134/S0036023621070081
  40. Jung B., Meyer G. // J. Alloys Compd. 1992. V. 183. P. 144.
  41. Jung B., Meyer G. // Z. Anorg. Allg. Chem. 1992. V. 610. № 4. P. 15.
  42. Mikhaylov M.A., Sukhikh T.S., Kompankov N.B., Sokolov M.N. // Polyhedron. 2023. V. 234. Art. 116326.
  43. Petrov P.A., Sukhikh T.S., Nadolinny V.A. et al. // Inorg. Chem. 2021. V. 60. № 9. P. 6746.
  44. Yarovoy S.S., Mirzaeva I.V., Mironov Y.V. et al. // Inorg. Chem. 2022. V. 61. № 31. P. 12442.
  45. Pronin A.S., Gayfulin Y.M., Sukhikh T.S et al. // Inorg. Chem. Front. 2022. V. 9. № 1. P. 186.
  46. Lurie Yu.Yu. Handbook of Analytical Chemistry. M.: Publishing House “Chemistry”, 1965. P. 157.
  47. Bennett M.J., Cotton F.A., Foxman B.M. // Inorg. Chem. 1968. V. 7. № 8. P. 1563.
  48. Adams D.M., Ruff P.W., Russell, D.R. // Faraday Trans. 1991. V. 87. № 12. P. 1831.
  49. Oldham C., Davies J.E.D., Ketteringham A.P. // J. Chem. Soc. D. 1971. V. 11. № 11. Р. 572.
  50. Rouschias G. // Chem. Rev. 1974. V. 74. № 5. P. 531.
  51. Abel E.W., Hargreaves G.B., Wilkinson G. // J. Chem. Soc. 1958. V. 638. P. 3149.
  52. Edwards D.A., Ward R.T. // J. Chem. Soc. A. 1970. P. 1617.
  53. Brauer G. // Handbook of Preparative Inorganic Chemistry. New York: Academic Press Inc., 1963. V. 1. p. 1477.
  54. Sapota A., Skrzypińska-Gawrysiak M. // Chlorek Benzoilu. Podstawy i Metody Oceny Środowiska Pracy. 2012. V. 2. № 2. P. 31.

补充文件

附件文件
动作
1. JATS XML
2. Fig. 1. Diffractogram for the obtained powder sample of Re3I9 (shown in black) and theoretically calculated (shown in red) from PCA data for single crystal Re3I9.

下载 (66KB)
3. Fig. 2. Diffractogram for the obtained powder sample [Re(CO)5I] (shown in black) and theoretically calculated (shown in red) from PCA data for single crystal [Re(CO)5I].

下载 (56KB)
4. Fig. 3. ESI-MS spectrum of ((n-C4H9)4N)2[Re2Cl8] in CH3CN.

下载 (227KB)

版权所有 © Российская академия наук, 2024