Forecast of Crystallizing Phases and Modeling of Chemical Interaction in the System CaO–MgO–SiO2

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

The phase tree of the previously studied СаO–MgO–SiO2 system was constructed. The phase tree includes three cycles. The phase tree is represented by fifteen simplices separated by fifteen stable secants. The formation of six double and four ternary compounds of congruent and incongruent melting was noted in the system. On the basis of the phase tree, taking into account the data on faceting elements, a forecast of crystallizing phases in stable secants and in phase secondary triangles was carried out. For the figurative points of the composition, corresponding to the intersections of stable and unstable secants, the chemical interaction is described on the basis of thermodynamic data. It has been shown that ternary compounds can be synthesized by several reactions.

About the authors

I. K. Garkushin

Samara State Technical University

Email: olavolga1965@gmail.com
443100, Samara, Russia

O. V. Lavrent’eva

Samara State Technical University

Email: olavolga1965@gmail.com
443100, Samara, Russia

A. M. Shterenberg

Samara State Technical University

Author for correspondence.
Email: olavolga1965@gmail.com
443100, Samara, Russia

References

  1. Бережной А.С. Многокомпонентные системы оксидов. Киев: Наукова думка, 1970. 544 с.
  2. Carlson W.D. Reversed pyroxene phase-equilibria in CaO–MgO–SiO2 from 925-degrees to 1,175-degrees-C at one atmosphere pressure // J. Contributions to Mineralogy and Petrology. 1986. V. 92. № 2. P. 218–224.
  3. Jung I.H., Decterov S.A., Pelton A.D. Critical thermodynamic evaluation and optimization of the CaO–MgO–SiO2 system // J. Eur. Ceram. Soc. 2005. V. 25. № 4. P. 313–333.
  4. Carlson W.D. Subsolidus phase-equilibria on the forsterite-saturated join Mg2Si2O6–CaMgSi2O6 at atmospheric pressure // J. Am. Mineral. 1988. V. 73. № 3–4. P. 232–241.
  5. Carlson W.D., Lindsley D.H. Thermochemistry of pyroxenes on the join Mg2Si2O6–CaMgSi2O6 // J. Am. Mineral. 1988. V. 73. № 3–4. P. 242–252.
  6. Essien E.R. Atasie V.N., Udobang E.U. Microwave energy-assisted formation of bioactive CaO–MgO–SiO2 ternary glass from bio-wastes // Bulletin of Materials Science. 2016. V. 39. № 4. P. 989–995.
  7. Prostakova V., Chen J., Jak E., Decterov S.A. Experimental investigation and thermodynamic modeling of the (NiO + CaO + SiO2), (NiO + CaO plus MgO) and (NiO plus CaO + MgO + SiO2) systems // J. Chem. Thermodyn. 2015. V. 86. P. 130–142.
  8. Ma X.D., Zhang D.W., Zhao Z.X., Evans T., Zhao B.J. Phase Equilibria Studies in the CaO–SiO2–Al2O3–MgO System with CaO/SiO2 Ratio of 1.10 // ISIJ International. 2016. V. 56. № 4. P. 513–519.
  9. Ma X.D., Wang G., Wu S.L., Zhu J.M., Zha B.J. Phase Equilibria in the CaO–SiO2–Al2O3–MgO System with CaO/SiO2 Ratio of 1.3 Relevant to Iron Blast Furnace Slags // ISIJ International. 2015. V. 55. № 11. P. 2310–2317.
  10. Ma X.D., Wang G., Wu S.L., Zhu J.M., Zha B.J. Phase Equilibria in the CaO–SiO2–Al2O3–MgO System with CaO/SiO2 Ratio of 1.3 Relevant to Iron Blast Furnace Slags // ISIJ INTERNATIONAL. 2015. V. 55. № 1. P. 2310–2317.
  11. Shi J.J., Sun L.F., Qiu J.Y., Wang Z.Y., Zhang B., Jiang M.F. Experimental Determination of the Phase Diagram for CaO–SiO2–MgO–10% Al2O3–5TiO2 // ISIJ International. 2016. V. 56. № 7. P. 1124–1131.
  12. Shi J.J., Chen M., Santoso I., Sun L.F., Jiang M.F., Taskinen P., Jokilaakso A. 1250 degrees C liquidus for the CaO–MgO–SiO2–Al2O3–TiO2 system in air // Ceramics International. 2020. V. 46. № 2. P. 1545–1550.
  13. Shi J.J., Chen M., Wan X.B., Taskinen P., Jokilaakso A. Phase Equilibrium Study of the CaO–SiO2–MgO–Al2O3–TiO2 System at 1300 degrees C and 1400 degrees C in Air // JOM. 2020. V. 72. № 9. P. 3204–3212.
  14. Gao Y.H., Liang Z.Y., Liu Q.C., Bian L.T. Effect of TiO2 on the Slag Properties for CaO–SiO2–MgO–Al2O3–TiO2 System // Asian J. Chemistry. 2012. V. 24. № 11. P. 5337–5340.
  15. Shi J.J., Chen M., Santoso I., Sun L.F., Jiang M.F., Taskinen P., Jokilaakso A. 1250 degrees C liquidus for the CaO–MgO–SiO2–Al2O3–TiO2 system in air // J. Ceram. Int. 2020. V. 46. № 2. P. 1545–1550.
  16. Jakobsson L.K., Tangstad M. Thermodynamic Activities and Distributions of Calcium and Magnesium Between Silicon and CaO–MgO–SiO2 Slags at 1873 K (1600 degrees C) // Metall. Mater. Trans. B. 2015. V. 46. № 2. P. 595–605.
  17. Garkushin I.K., Lavrenteva O.V., Shterenberg A.M. Forecast of Crystallizing Phases and Description of the Chemical Interaction in the Al2O3–TiO2–MgO System // J. Phys. Chem. Glasses. 2021. V. 47. № 6. P. 622–629.
  18. Lopez-Rodriguez J., Romero-Serrano A., Hernandez-Ramirez A., Perez-Labra M., Cruz-Ramirez A., Rivera-Salinas E. Use of a Structural Model to Calculate the Viscosity of Liquid Silicate Systems // ISIJ International. 2018. V. 58. № 2. P. 220–226.
  19. Shu Q., Wang L., Chou K.C. Estimation of viscosity for some silicate ternary slags // J. Mining and Metallurgy, Section B. 2014. V. 50. № 2. P. 139–144.
  20. Licko T., Danek V. Viscosity and structure of melts in the system CaO–MgO–SiO2 // J. Phys. Chem. Glasses. 1986. V. 27. № 1. P. 22–26.
  21. Zhang G.H., Singh A.K., Chou K.C. An Empirical Model for Estimating Density of Multicomponent System Based on Limited Data // J. High Temperature Materials and Processes. 2009. V. 28. № 5. P. 309–314.
  22. Moharana N., Seetharaman S., Viswanathan N.N., Kumar K.C.H. Modelling the density of Al2O3–CaO–MgO–SiO2 system using the CALPHAD approach // J. CALPHAD. 2020. V. 7. (101781).
  23. Kansal I., Goel A., Tulyaganov D.U., Rajagopal R.R. Ferreira J. Structural and thermal characterization of CaO–MgO–SiO2–P2O5–CaF2 glasses // J. Eur. Ceram. Soc. 2012. V. 32. № 11. P. 2739–2746.
  24. Термодинамические константы веществ. Вып. IX / Под. ред. В. П. Глушко. М.: ВИНИТИ, 1979. 574 с.

Supplementary files

Supplementary Files
Action
1. JATS XML
2.

Download (301KB)
3.

Download (186KB)

Copyright (c) 2023 И.К. Гаркушин, О.В. Лаврентьева, А.М. Штеренберг