Высокотемпературная графитизация алмаза при термообработке на воздухе и в вакууме

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

В работе изучены морфологические и структурные изменения, происходящие при графитизации синтетического алмазного порошка (с высоким огранением граней) и микропорошка, при термообработке на воздухе при температуре до 1000°C и в вакууме при температуре до 1600°C. Наиболее развитыми гранями исходных кристаллов алмаза являются октаэдрические {111} и кубические {100} грани. Установлено, что графитизация начинается с вершин и ребер кристаллов. Грани {111} более подвержены графитизации, чем грани {100}. Морфологический анализ графитированного алмаза АС160 на воздухе помог изучить кинетику графитизации: рост дентритных графитовых кристаллов и образования «ямок графитизации» на поверхности граней алмаза. Впервые показано, что на разных гранях алмаза формируется графит разной формы с разной скоростью, так на гранях {111} формируется и растет графит в виде треугольников, а на гранях {100} — в виде квадратов. При высокой температуре наблюдается объемная графитизация алмазных частиц, сопровождаемая их разрушением, в основном по ступеням роста.

Full Text

Restricted Access

About the authors

В. Я. Шевченко

НИЦ «Курчатовский институт» — ЦНИИ КМ «Прометей»

Author for correspondence.
Email: shevchenko@isc.nw.ru
Russian Federation, Санкт-Петербург

С. Н. Перевислов

НИЦ «Курчатовский институт» — ЦНИИ КМ «Прометей»

Email: shevchenko@isc.nw.ru
Russian Federation, Санкт-Петербург

А. В. Ножкина

АО «ВНИИАЛМАЗ»

Email: shevchenko@isc.nw.ru
Russian Federation, Москва

А. С. Орыщенко

НИЦ «Курчатовский институт» — ЦНИИ КМ «Прометей»

Email: shevchenko@isc.nw.ru
Russian Federation, Санкт-Петербург

И. Е. Арлашкин

НИЦ «Курчатовский институт» — ЦНИИ КМ «Прометей»

Email: shevchenko@isc.nw.ru
Russian Federation, Санкт-Петербург

References

  1. Shevchenko V. Y., Kovalchuk M. V., Oryshchenko A. S., Perevislov S. N. New chemical technologies based on Turing reaction-diffusion processes // Doklady Chemistry. Pleiades Publishing. 2021. V. 496. P. 28–31.
  2. Shevchenko V. Y., Perevislov S. N., Ugolkov V. L. Physicochemical interaction processes in the carbon (diamond)-silicon system // Glass Physics and Chemistry. 2021. V. 47. № 3. P. 197–208.
  3. Shevchenko V. Y., Perevislov S. N. Reaction-diffusion mechanism of synthesis in the diamond-silicon carbide system // Russian Journal of Inorganic Chemistry. 2021. V. 66. P. 1107–1114.
  4. Seal M. Graphitization of diamond // Nature. 1960. V. 185. № 4712. P. 522–523.
  5. Yafei Z., Fangqing Z., Guanghua C. A study of phase transformation between diamond and graphite in PT diagram of carbon // Carbon. 1994. V. 32. № 8. P. 1415–1418.
  6. Vita A. D., Galli G., Canning A., Car R. A microscopic model for surface-induced diamond-to-graphite transitions // Nature. 1996. V. 379. № 6565. P. 523–526.
  7. Bundy F. P., Bassett W. A., Weathers M. S., Hemley R. J., Mao H. U., Goncharov A. F. The pressure-temperature phase and transformation diagram for carbon; updated through 1994 // Carbon. 1996. V. 34. № 2. P. 141–153.
  8. van Enckevort W. J.P, de Theije F. K. Etching of diamond / Ed. by Nazare M. H., Neves A. J. Properties, growth and application of diamond (INSPEC) // London: Institution of Electrical Engineers. 2001. P. 115–124.
  9. Khmelnitsky R. A., Gippius A. A. Transformation of diamond to graphite under heat treatment at low pressure // Phase Transitions. 2014. V. 87. № 2. P. 175–192.
  10. Howes V. R. The graphitization of diamond // Proceedings of the Physical Society (1958–1967). 1962. V. 80. № 3. P. 648.
  11. Evans T., James P. F. A study of the transformation of diamond to graphite // Proceedings of the Royal Society of London. Series A. Mathematical and Physical Sciences. 1964. V. 277. № 1369. P. 260–269.
  12. Davies G., Evans T. Graphitization of diamond at zero pressure and at a high pressure // Proceedings of the Royal Society of London. A. Mathematical and Physical Sciences. 1972. V. 328. № 1574. P. 413–427.
  13. Fedoseev D. V., Vnukov S. P., Bukhovets V. L., Anikin B. A. Surface graphitization of diamond at high temperatures // Surface and Coatings Technology. 1986. V. 28. № 2. P. 207–214.
  14. De Vita A., Galli G., Canning A., Car R. Graphitization of diamond (111) studied by first principles molecular dynamics // Applied surface science. 1996. V. 104. P. 297–303.
  15. Jungnickel G., Porezag D., Frauenheim T., Heggie M. I., Lambrecht W. R. L., Segall B., Angus J. C. Graphitization effects on diamond surfaces and the diamond/graphite interface // Physica status solidi (a). 1996. V. 154. № 1. P. 109–125.
  16. Liu Y. A.N., Meletis E. I. Evidence of graphitization of diamond-like carbon films during sliding wear // Journal of Materials Science. 1997. V. 32. № 13. P. 3491–3495.
  17. Butenko Y. V., Kuznetsov V. L., Chuvilin A. L., Kolomiichuk V. N., Stankus S. V., Khairulin R. A., Segall B. Kinetics of the graphitization of dispersed diamonds at “low” temperatures // Journal of Applied Physics. 2000. V. 88. № 7. P. 4380–4388.
  18. Pantea C., Gubicza J., Ungar T., Voronin G. A., Zerda T. W. Dislocation density and graphitization of diamond crystals // Physical Review B. 2002. V. 66. № 9. P. 094106.
  19. Pantea C., Qian J., Voronin G. A., Zerda T. W. High pressure study of graphitization of diamond crystals // Journal of applied physics. 2002. V. 91. № 4. P. 1957–1962.
  20. Strekalov V. N., Konov V. I., Kononenko V. V., Pimenov S. M. Early stages of laser graphitization of diamond // Applied Physics A. 2003. V. 76. № 4. P. 603–607.
  21. Welz S., Gogotsi Y., McNallan M. J. Nucleation, growth, and graphitization of diamond nanocrystals during chlorination of carbides // Journal of applied physics. 2003. V. 93. № 7. P. 4207–4214.
  22. Shao W. Z., Ivanov V. V., Zhen L., Cui Y. S., Wang Y. A study on graphitization of diamond in copper-diamond composite materials // Materials letters. 2004. V. 58. № 1–2. P. 146–149.
  23. Qian J., Pantea C., Huang J., Zerda T. W., Zhao Y. Graphitization of diamond powders of different sizes at high pressure — high temperature // Carbon. 2004. V. 42. № 12–13. P. 2691–2697.
  24. Hickey D. P., Jones K. S., Elliman R. G. Amorphization and graphitization of single-crystal diamond. A transmission electron microscopy study // Diamond and related materials. 2009. V. 18. № 11. P. 1353–1359.
  25. de Oliveira L. J., Cabral S. C., Filgueira M. Study hot pressed Fe-diamond composites graphitization // International Journal of Refractory Metals and Hard Materials. 2012. V. 35. P. 228–234.
  26. Chen Z., Subhash G., Tulenko J. S. Raman spectroscopic investigation of graphitization of diamond during spark plasma sintering of UO2-diamond composite nuclear fuel // Journal of Nuclear Materials. 2016. V. 475. P. 1–5.
  27. Sha X., Yue W., Zhang H., Qin W., She D., Wang C. Enhanced oxidation and graphitization resistance of polycrystalline diamond sintered with Ti-coated diamond powders // Journal of Materials Science & Technology. 2020. V. 43. P. 64–73.
  28. Catalan F. C. I., Anh L. T., Oh J., Kazuma E., Hayazawa N., Ikemiya N., Kamoshida N., Tateyama Y., Einaga Y., Kim Y. Localized Graphitization on Diamond Surface as a Manifestation of Dopants // Advanced Materials. 2021. V. 33. № 42. P. 2103250.
  29. Bródka A., Zerda T. W., Burian A. Graphitization of small diamond cluster — Molecular dynamics simulation // Diamond and related materials. 2006. V. 15. № 11–12. P. 1818–1821.
  30. Wang C., Song X., Shen X., Sun F. Molecular dynamics simulation and experimental investigation of structural transformation and graphitization in diamond during friction // Computational Materials Science. 2020. V. 184. P. 109862.
  31. Yan X., Wei J., Guo J., Hua C., Liu J., Chen L., Hei L., Li C. Mechanism of graphitization and optical degradation of CVD diamond films by rapid heating treatment // Diamond and Related Materials. 2017. V. 73. P. 39–46.
  32. Kamali A. R. Black diamond powder: On the thermal oxidation and surface graphitization // Applied Surface Science. 2021. V. 551. P. 149371.
  33. Bokhonov B. B., Dudina D. V., Sharafutdinov M. R. Graphitization of synthetic diamond crystals: A morphological study // Diamond and Related Materials. 2021. V. 118. P. 108563.
  34. Seal M. Graphitization and plastic deformation of diamond // Nature. 1958. V. 182. P. 1264–1267.
  35. Lewis J. K., Chen H., Nafis S., Nielsen M. High temperature graphitization of diamond // Proc. Electrochem. Soc. 1991. V. 91. № 8. P. 455–462.
  36. Evans T. Changes produced by high temperature treatment of diamond // The properties of diamond. 1979. P. 403–425.
  37. Evans T., Sauter D. H. Etching of diamond surfaces with gases // Philosophical Magazine. 1961. V. 6. № 63. P. 429–440.
  38. Bogdanov S. P., Shevchenko V. Y., Ugolkov V. L., Khristyuk N. A., Perevislov S. N., Sychev M. M., Nozhkina A. V. Features of oxidation of commercial diamond powders // Glass Physics and Chemistry. 2022. V. 48. № 3. P. 163–173.
  39. Haque M. S., Naseem H. A., Malshe A. P., Brown W. D. A Study of stress in microwave plasma chemical vapor deposited diamond films using X‐Ray diffraction // Chemical Vapor Deposition. 1997. V. 3. № 3. P. 129–135.
  40. Sun Z., Shi J. R., Tay B. K., Lau S. P. UV Raman characteristics of nanocrystalline diamond films with different grain size // Diamond and related materials. 2000. V. 9. № 12. P. 1979–1983.
  41. Osswald S., Mochalin V. N., Havel M., Yushin G., Gogotsi Y. Phonon confinement effects in the Raman spectrum of nanodiamond // Physical Review B. 2009. V. 80. № 7. P. 075419.
  42. Jorio A., Souza Filho A. G. Raman studies of carbon nanostructures // Annu. Rev. Mater. Res. 2016. V. 46. № 1. P. 357–382.
  43. Schuepfer D. B., Badaczewski F., Guerra-Castro J.M., Hofmann D. M., Heiliger C., Smarsl B., Klar P. J. Assessing the structural properties of graphitic and non-graphitic carbons by Raman spectroscopy // Carbon. 2020. V. 161. P. 359–372.

Supplementary files

Supplementary Files
Action
1. JATS XML
2. Fig. 1. SEM micrographs of initial particles of ACM micropowder (a) and AC160 powder (b)

Download (176KB)
3. Fig. 2. SEM micrographs of initial diamond particles having the shape of cubo-octahedron (a) and truncated octahedron, with the most developed cubic {100} and octahedral {111} faces

Download (195KB)
4. Fig. 3. Surface defects of initial diamond particles: a) etching pits (1), surface chips (2); b) crystal growth steps on {111} faces of diamond

Download (146KB)
5. Fig. 4. Diffractograms of initial diamond powders: coarse powder AC160 (a); micropowder ACM (b), in the range: 2θ = 10÷90° (left); 2θ = 42÷46° (middle) and 2θ = 73÷77° (right)

Download (83KB)
6. Fig. 5. Raman spectra of initial diamond powders: coarse powder AC160 (a); micropowder ACM (b) in the range of wave numbers 1000-2000 cm-1 (left) and 1305-1340 cm-1 (right)

Download (103KB)
7. Fig. 6. TG and DSC analyses of AC160 diamond powder heat-treated in air in the temperature range of 30-1500°C

Download (114KB)
8. Fig. 7. TG and DSC analyses of diamond micropowder ACM heat-treated in air in the temperature range of 30-1500°C

Download (112KB)
9. Fig. 8. TG and DSC analyses of AC160 diamond powder heat-treated in Ar atmosphere in the temperature range of 30-1500°C

Download (106KB)
10. Fig. 9. TG and DSC analyses of diamond micropowder AFM heat-treated in Ar atmosphere in the temperature range of 30-1500°C

Download (100KB)
11. Fig. 10. Microphotographs of AC160 diamond particles heat-treated in air at 600°C: a) group of particles; b) single particle

Download (112KB)
12. Fig. 11. Microphotographs of AC160 diamond particles heat-treated in air at 700°C: a) group of particles; b) single particle

Download (109KB)
13. Fig. 12. Microphotographs of AC160 diamond particles heat-treated in air at 800°C: a) group of particles; b) single particle

Download (155KB)
14. Fig. 13. Microphotographs of AC160 diamond particles heat-treated in air at 900°C: a) group of particles; b) single particle

Download (151KB)
15. Fig. 14. Microphotographs of AC160 diamond particles heat-treated in air at 1000°C: a) group of particles; b) single particle

Download (169KB)
16. Fig. 15. Destruction of diamond particles during heat treatment in air: a) at 600°C; b) at 700°C; c) at 800°C; d) at 900°C; e) at 1000°C

Download (172KB)
17. Fig. 16. X-ray phase analysis of AC160 diamond particles heat-treated in air

Download (100KB)
18. Fig. 17. Microstructures of diamond particles of AFM micropowders heat-treated in air at temperatures: 600°C (a); 700°C (b); 800°C (c); 900°C (d); 1000°C (e)

Download (216KB)
19. Fig. 18. Microstructures of diamond particles of AC160 powder heat-treated in vacuum at temperatures: 800°C (a), 1100°C (b), 1500°C (c)

Download (101KB)
20. Fig. 19. X-ray phase analysis of heat-treated in vacuum diamond particles AC160

Download (93KB)
21. Fig. 20. Graphitisation of AC160 diamond particles heat-treated in vacuum at 1600°C. Magnification 350* (a), magnification 500* (b)

Download (194KB)
22. Fig. 21. Microstructures of diamond particles of AFM micropowder heat-treated in vacuum at temperatures: 1500°C (a) and 1600°C (b)

Download (132KB)
23. Fig. 22. Graphitisation of diamond after heat treatment at 800°C: a) triangular ‘graphitisation pits’ on the face (111) of diamond; b) square ‘graphitisation pits’ on the face (100) of diamond

Download (158KB)

Copyright (c) 2024 Russian Academy of Sciences