Зависимость микротвердости стекол от температуры

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

Предложен метод расчета температурной зависимости микротвердости стекол в интервале температур от абсолютного нуля до температуры размягчения. Согласно модели, положенной в основу расчета, стекло переходит в пластическое состояние не только под действием температуры, но и под действием механических напряжений выше критической величины, соответствующей микротвердости. Поэтому при одновременном воздействии этих двух факторов стекло переходит в пластическое состояние в том случае, если сумма термической и механической энергии сетки стекла превышает критическую величину. Предложенный метод расчета опробован на примере органического стекла и двух наиболее важных для практики оксидных стекол: плавленого кварца и промышленного щелочно-силикатного стекла (soda lime silica glass).

Full Text

Restricted Access

About the authors

Юрий Станиславович Тверьянович

Институт химии Санкт-Петербургского государственного университета

Author for correspondence.
Email: y.tveryanovich@spbu.ru
ORCID iD: 0000-0003-4343-9817
Russian Federation, 198504, Санкт-Петербург, Университетский пр., 26

References

  1. Cook R.F., Pharr G.M. Direct Observation and Analysis of Indentation Cracking in Glasses and Ceramics // J. Am. Ceram. Soc. 1990. V. 73. № 4. P. 787–817.
  2. Guin J.-P., Rouxel T., Sangleboeuf J.-C. Hardness, Toughness, and Scratchability of Germanium-Selenium Chalcogenide Glasses // J. Am. Ceram. Soc. 2002. V. 85. № 6. P. 1545–1552.
  3. El-Zaidia M.M., El-Gohary Z.H., Abo-Ghazala M.S., Turky G.M., Rabea E.A. Mechanical Properties of Chalcogenide Optic Fiber Material Based Tellurium // IOSR Journal of Applied Physics. 2019. V. 11. № 1. P. 55–61.
  4. Rouxel T. Elastic Properties and Short-to Medium-Range Order in Glasses // J. Am. Ceram. Soc. 2007. V. 90. № 10. P. 3019–3039.
  5. Freitas J., Shimakawa K., Kugler S. Some remarks on the glass-transition temperature in chalcogenide glasses: a correlation with the microhardness ruben // Chalcogenide Letters. 2013. V. 10. № 1. P. 39–43.
  6. Kugler S., Shimakawa K. Amorphous Semiconductors. Cambridge University Press. 2015. P. 147.
  7. Balta-Calleja F.J., Sanditov D.S., Privalko V.P. Review: the microhardness of non-crystalline materials // J. Mater. Sci. 2002. V. 37. № 21. P. 4507–4516.
  8. Fakirov S. The Relationship Between the Microhardness and Glass Transition Temperature of Inorganic Glasses Compared with Polymeric Glasses // Int. J. Polymeric Mat. and Polymeric Biomaterials. 2005. V. 54. № 12. P. 1185–1189.
  9. Fakirov S., Balta-Calleja F.J., Krumova M. On the Relationship between Microhardness and Glass Transition Temperature of Some Amorphous Polymers // J. Polymer Science: Part B: Polymer Physics. 1999. V. 37. № 13. P. 1413–1419.
  10. Slouf M., Strachota B., Strachota A., Gajdosova V., Bertschova V., Nohava J. Macro-, Micro- and Nanomechanical Characterization of Crosslinked Polymers with Very Broad Range of Mechanical Properties // Polymers. 2020. V. 12. № 2951. 26 p.
  11. Tveryanovich Yu.S. On the Correlation of the Microhardness and Softening Temperature for Chalcogenide Glasses // Glass Physics and Chemistry. 2022. Vol. 48. No. 1. P. 72–74.
  12. Tveryanovich Yu.S. The Relationship between Microhardness and Glass Transition Temperature of Chalcogenide Glasses // Glass Physics and Chemistry. 2022. Vol. 48. № 4. Р. 243–247.
  13. Mitkova M., Wang Yu., Boolchand P. Dual Chemical Role of Ag as an Additive in Chalcogenide Glasses // Physical Review Letters. 1999. V. 83. № 19. Р. 3848–3851.
  14. Varshneya A.K. Fundamentals of inorganic glasses. San Diego. Academic Press. 1994. P. 187.
  15. Shelby J.E. Introduction to glass science and technology. Cambridge, UK. The Royal Society of Chemistry. 1997. 188 р.
  16. Wiederhorn S.M., Hockey B.J. Hot erosion of glass // J. of Non-Cryst. Sol. 1980. V. 38–39. № 1. P. 433–438.
  17. Watanabe T., Muratsubaki K., Benino Y., Saitoh H., Komatsu T. Hardness and elastic properties of Bi2O3-based glasses // J. of Materials Science. 2001. V. 36. P. 2427–2433.
  18. Watanabe T., Benino Y., Ishizaki K., Komatsu T. Temperature Dependence of Vickers Hardness for TeO2-Based and Soda-Lime Silicate Glasses // Journal of the Ceramic Society of Japan. 1999. V. 107. № 12. P. 1140–1145.
  19. Fomenko L.S., Lubenets S.V., Natsik V.D., Prokhvatilov A.I., Galtsov N.N., Li Q.Q., Koutsos V. Investigation of the low-temperature mechanical behavior of elastomers and their carbon nanotube composites using microindentation // Fiz. Nizk. Temp. 2019. V. 45. P. 663–672.
  20. Beake B.D., Smith J. F. High-temperature nanoindentation testing of fused silica and other materials // Phil. Mag. A. 2002. V. 82. № 10. P. 2179–2186.
  21. Fakirov S., Krumova M., Krasteva B. On the temperature dependence of microhardness of some glassy polymers // J. of Materials Science Letters. 2000. V. 19. P. 2123–2125.
  22. Rusakova H.V., Fomenko L.S., Lubenets S.V., Natsik V.D. Low-Temperature Features of the Micromechanical Properties of Polystyrene // Fiz. Nizk. Temp. 2019. V. 45. P. 1538–1548.
  23. Kasap S.O., Yannacopoulos S. Mechanical and thermal properties of the glassy semiconductor chlorinated Se0.997As0.003 used as an X-ray imaging material // Can. J. Phys. 1989. V. 67. P. 686–693.
  24. Keryvin V., Korimilli P.E., Gueguen Y., Sangleboeuf J.-C., Ramamurty U. Temperature dependence of mechanical properties and pressure sensitivity in metallic glasses below glass transition // Philosophical Magazine. 2008. V. 88. № 12. P. 1773–1790.
  25. Vaillant M.L., Keryvin V., Rouxel T., Kawamura Y. // Scripta Mater. 2002. V. 47. № 1. P. 19.
  26. Keryvin V., Bernard C., Sanglebœuf J.-C., Yokoyama Y., Rouxe T. Toughness of Zr55Cu30Al10Ni5 bulk metallic glass for two oxygen levels // J. Non-Cryst. Sol. 2006. V. 352. № 26–27. P. 2863.
  27. Peker A., Johnson W.L. A Highly Processable Metallic Glass: Zr41.2Ti13.8Cu12.5Ni10.0Be22.5 // Appl. Phys. Letters. 1993. V. 63. P. 2342–2344.
  28. Donovan P. Plastic flow and fracture of Pd40Ni40P20 metallic glass under an indentor // J. Mater. Sci. 1989. V. 24. P. 523–535.
  29. Le Bourhis E., Gadaud P., Guin J.-P., Tournerie N., Zhang X.H., Lucas J., Rouxel T. Temperature dependence of the mechanical behavior of a GeAsSe glass // Scripta Materialie. 2001. V. 45. P. 317–323.
  30. Calleja F.J.B., Sanditov D.S., Privalko V.P. Review: the microhardness of non-crystalline materials // Journal of Materials Science. 2002. V. 37. P. 4507–4516.
  31. Shunbo W., Tver’yanovich Yu.S. Relationship of Temperature Dependences of Microhardness and Enthalpy of Glass on the Example of Selenium // Glass Physics and Chemistry. 2023. V. 49. № 4. P. 336–339.
  32. Andrievskii R.A., Lanin A.G., Rymashevskii G.A. Prochnost’ tugoplavkikh soedinenii (Strength of Refractory Compounds). Moscow: Metallurgiya, 1974. 232 р.
  33. Fischer-Cripps A. C. Introduction to Contact Mechanics. Second Edition. New York. Springer, 2007. 221 р.
  34. Gere J.M., Timoshenko S.P. Mechanics of Materials. GB: Stanley Thornes, 1999. 913 p.
  35. Chung H.-Y., Weinberger M.B., Yang J.-M., Tolbert S.H., Kaner R.B. Correlation between hardness and elastic moduli of the ultraincompressible transition metal diborides RuB2, OsB2, and ReB2 // Appl. Phys. Letters. 2008. V. 92. № 261904.
  36. Rouxel T. What we can learn from crystals about the mechanical properties of glass // J. of the Ceramic Society of Japan. 2022. V. 130. № 8. P. 519–530.
  37. Yamane M., Mackenzie J.D. Vicker’s Hardness of glass // J. of Non-Cryst. Sol. 1974. V. 15. № 2. P. 153–164.
  38. Ali S. Properties and Hardness of Mixed Alkaline Earth Silicate Oxynitride Glasses // Materials. 2022. V. 15. Р. 5022.
  39. Marti E., Kaisersberger E., Moukhina E. Heat capacity functions of polystyrene in glassy and in liquid amorphous state and glass transition DSC and TMDSC study // J. of Thermal Analysis and Calorimetry. 2006. V. 85. № 2. P. 505–525.
  40. Katare R., Bajpai R., Datt S.C. Microhardness of Blends of Polystyrene and Polymethyl methacrylate // Polymer Testing. 1991. V. 10. P. 139–143.
  41. https://designerdata.nl/materials/plastics/thermo-plastics/polystyrene
  42. https://polymerdatabase.com/polymers/polystyrene.html
  43. https://srd.nist.gov/JPCRD/jpcrd202.pdf; https://pubs.usgs.gov/of/1994/0671/report.pdf
  44. Fanderlik I. 4 — Physical and Chemical Properties of Silica Glasses // Glass Science and Technology. 1991. V. 11. P. 194–270.
  45. Sharp D.E., Ginther L.B. Effect of Composition and Temperature on the Specific Heat of Glass // J. of the Amer. Ceramic Society. 1951. V. 34. № 9. P. 260–271.
  46. Beake B.D., Smith J.F. High-temperature nanoindentation testing of fused silica and other materials // Phil. Mag. A. 2002. V. 82. № 10. P. 2179–2186.
  47. Huang J., Gupta P.K. Temperature dependence of the isostructural heat capacity of a soda lime silicate glass // J. of Non-Cryst. Sol. 1992. V. 139. P. 239–247.
  48. Cachiaras A., Gilde L., Swab J.J., Patel P.J., Quinn G.D. Soda-Lime-Silicate Float Glass: A Property Comparison. US Army Research Laboratory. 2017. TR-8187.
  49. Watanabe T., Benino Y., Ishizaki K., Komatsu T. Temperature Dependence of Vickers Hardness for TeO2-Based and Soda-Lime Silicate Glasses // J. of the Ceramic Society of Japan. 1999. V. 107. № 1252. P. 1140–1145.
  50. Wilantewicz T.E., Varner J.R. Vickers indentation behavior of several commercial glasses at high temperatures // J. Mater. Sci. 2008. V. 43. P. 281–298.

Supplementary files

Supplementary Files
Action
1. JATS XML
2. Fig. 1. Temperature dependences of microhardness of two oxide glasses [18]. The arrows show the softening temperature.

Download (68KB)
3. Fig. 2. Schematic representation of the temperature dependence of the energy of thermal vibrations of the glass lattice: (Q) — red line and microhardness (H) — blue line. The symbols used are explained in the text.

Download (79KB)
4. Fig. 3. Dependence of the microhardness of polystyrene on temperature. The dotted line shows the temperature derivative of microhardness calculated according to equation (10) for room temperature, and the solid line shows the calculated temperature dependence of microhardness. The arrow indicates the softening temperature of polystyrene. — the extreme points of the experimental linear temperature dependence of microhardness obtained in [21]. — the extreme points of the experimental linear temperature dependence of microhardness obtained in [22].

Download (75KB)
5. Fig. 4: a is the temperature dependence of the microhardness of quartz glass. The dots indicate experimental data [46]; b is the temperature dependence of the microhardness of alkali—silicate glass (soda - lime — silica — glass). The dots indicate the experimental data [49]. The arrow marks Tg. The solid red line is the calculated temperature dependence of microhardness, the dotted line is a hypothetical drop in microhardness above the softening temperature.

Download (84KB)

Copyright (c) 2024 Russian Academy of Sciences