Comparative Study of the Synthesis of Ceramic Composites Based on Lanthanum Orthophosphate

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

Two approaches to the synthesis of nanosized precursor powders 0.5LaPO4·nH2O–0.5ZrO(OH)2 and 0.5LaPO4·nH2O–0.5Y(OH)3 for the fabrication of ceramic composites 0.5LaPO4–0.5ZrO2 and 0.5LaPO4–0.5Y2O3 were used. In the first case, sol-gel synthesis of components (LaPO4·nH2O, ZrO(OH)2 or Y(OH)3) was carried out separately by reverse precipitation technique. In the second case, reverse precipitation was used too but without separate preparation of sols of the components. The results of the synthesis were compared by XRD analysis, thermal behavior of precursor powders by DSC/TG technique, as well as Vickers microhardness values of 0.5LaPO4–0.5ZrO2 and 0.5LaPO4–0.5Y2O3 ceramic composites.

About the authors

V. L. Ugolkov

Grebenshchikov Institute of Silicate Chemistry, Russian Academy of Sciences, 199034, St. Petersburg, Russia

Email: la_mez@mail.ru
Россия, 199034, Санкт-Петербург, наб. Макарова, д. 2

L. A. Koptelova

Grebenshchikov Institute of Silicate Chemistry, Russian Academy of Sciences, 199034, St. Petersburg, Russia

Email: la_mez@mail.ru
Россия, 199034, Санкт-Петербург, наб. Макарова, д. 2

T. V. Khamova

Grebenshchikov Institute of Silicate Chemistry, Russian Academy of Sciences, 199034, St. Petersburg, Russia

Email: la_mez@mail.ru
Россия, 199034, Санкт-Петербург, наб. Макарова, д. 2

L. P. Mezentseva

Grebenshchikov Institute of Silicate Chemistry, Russian Academy of Sciences, 199034, St. Petersburg, Russia

Email: la_mez@mail.ru
Россия, 199034, Санкт-Петербург, наб. Макарова, д. 2

A. V. Osipov

Grebenshchikov Institute of Silicate Chemistry, Russian Academy of Sciences, 199034, St. Petersburg, Russia

Author for correspondence.
Email: la_mez@mail.ru
Россия, 199034, Санкт-Петербург, наб. Макарова, д. 2

References

  1. Levi C.G. Emerging materials and processes for thermal barrier systems // Curr. Opin. Solid St. M. 2004. V. 8. № 1. P. 77–91.
  2. Sujith S.S., Arun Kumar S.L., Mahesh K.V., Mohamed A.P., Ananthakumar S. Sintering and thermal shock resistance properties of LaPO4 based composite refractories // Trans. Indian Ceram. Soc. 2014. V. 73. № 2. P. 161‒164.
  3. Wang Y., Liu H.-T., Cheng H.-F., Wang J. Research progress on oxide/oxide ceramic matrix composites // J. Inorg. Chem. 2014. V. 29. № 7. P. 673–680.
  4. Orlova A.I., Ojovan M.I. Ceramic mineral waste-forms for nuclear waste immobilization // Materials. 2019. V. 12. № 16. Article number 2638 (45 p.)
  5. Ojovan M.I., Lee W.E. New immobilising hosts and technologies. // In: An introduction to nuclear waste immobilisation (Second Edition). Elsevier Ltd., 2014. Chapter 18. P. 283–305.
  6. Min W., Daimon K., Matsubara T., Hikichi Y. Thermal and mechanical properties of sintered machinable LaPO4–ZrO2 composites // Mater. Res. Bull. 2002. V. 37. № 6. P. 1107–1115.
  7. Shijina K., Sankar S., Midhun M., Firozkhan M., Nair B.N., Warrier K.G., Hareesh U.N.S. Very low thermal conductivity in lanthanum phosphate–zirconia ceramic nanocomposites processed using a precipitation–peptization synthetic approach // New J. Chem. 2016. V. 40. № 6. P. 5333‒5337.
  8. Sankar S., Raj A.N., Jyothi C.K., Warrier K.G.K., Padmanabhan P.V.A. Room temperature synthesis of high temperature stable lanthanum phosphate–yttria nano composite // Mater. Res. Bull. 2012. V. 47. № 7. P. 1835–1837.
  9. Deepthi T., Balamurugan K. Effect of yttrium (20%) doping on mechanical properties of rare earth nano lanthanum phosphate (LaPO4) synthesized by aqueous sol-gel process // Ceram. Int. 2019. V. 45. № 15. P. 18229‒18235.
  10. Mezentseva L., Osipov A., Ugolkov V., Kruchinina I., Maslennikova T., Koptelova L. Sol-gel synthesis of precursors and preparation of ceramic composites based on LaPO4 with Y2O3 and ZrO2 additions // J. Sol-Gel Sci. Technol. 2019. V. 92. № 2. P. 427‒441.
  11. Мезенцева Л.П., Осипов А.В., Криворучко Ю.А., Ловцова О.Ю., Коптелова Л.А. Керамические композиты на основе наноразмерного ортофосфата лантана и их свойства // Физ. хим. стекла. 2021. Т. 47. № 6. С. 678‒688.
  12. Мезенцева Л.П., Осипов А.В., Уголков В.Л., Кручинина И.Ю., Иванова П.И., Хамова Т.В., Любимцев А.С. Керамические композиты на основе ортофосфата лантана и оксида алюминия: Получение и свойства // Физ. хим. стекла. 2022. Т. 48. № 3. С. 307‒324.
  13. Патент РФ на изобретение № 2791913 “Способ получения керамических композитов на основе ортофосфата лантана”, заявка № 2022108547, приоритет изобретения 29.03.2022 г., зарегистрировано в Гос. реестре изобретений РФ 14 марта 2023 г., патентообладатель Институт химии силикатов им. И.В. Гребенщикова РАН, авторы Мезенцева Л.П., Осипов А.В., Масленникова Т.П., Кручинина И.Ю., Любимцев А.С., Акатов А.А.
  14. Bregiroux D., Lucas S., Champion E., Audubert F., Bernache-Assollant D. Sintering and microstructure of rare earth phosphate ceramics REPO4 with RE = La, Ce or Y // J. Europ. Ceram. Soc. 2006. V. 26. № 3. P. 279–287.
  15. Лавров А.В., Гузеева Л.С., Федоров П.М., Тананаев И.В. Образование метафосфатов циркония и гафния в расплавах фосфорных кислот // Неорг. матер. 1974. Т. 10. № 5. С. 851‒856.
  16. Balamurugan K. Preparation and machining studies of LaPO4–Y2O3 ceramic matrix composite // PhD Thesis. 2017. Department of Mechanical Engineering. Kalasalingam University. (Kalasalingam Academy of Research and Education) Anand Nagar: Krishnankoil. 170 p.
  17. Li Z., Liu J., Li S., Du H. Microstructure, mechanical properties and thermal shock resistance of ZrO2–LaPO4 composite // J. Alloys Comps. 2009. V. 480. № 2. P. 863–866.

Supplementary files

Supplementary Files
Action
1. JATS XML
2.

Download (81KB)
3.

Download (420KB)
4.

Download (112KB)
5.

Download (228KB)

Copyright (c) 2023 Л.П. Мезенцева, А.В. Осипов, В.Л. Уголков, Л.А. Коптелова, Т.В. Хамова