Кластерная самоорганизация интерметаллических систем: новые кластеры-прекурсоры K3, K4, K6, K11 для самосборки кристаллических структур семейства li40P4Ge20-oP64 и семейства ti40P24-oP64
- Authors: Шевченко В.Я.1, Илюшин Г.Д.2
-
Affiliations:
- Институт химии силикатов им. И.В. Гребенщикова РАН
- НИЦ «Курчатовский институт»
- Issue: Vol 50, No 4 (2024)
- Pages: 369-379
- Section: Articles
- URL: https://rjonco.com/0132-6651/article/view/681522
- DOI: https://doi.org/10.31857/S0132665124040014
- EDN: https://elibrary.ru/QCMLHY
- ID: 681522
Cite item
Abstract
С помощью компьютерных методов (пакет программ ToposPro) осуществлен комбинаторно-топологический анализ и моделирование самосборки кристаллических структур Li40P4Ge20-oP64 (V = 1082.85 Å3, Pnma), Ti40P24-oP64 (V = 955.14 Å3, Pnma). Для кристаллической структуры Li40P4Ge20-oP64 установлены 36 вариантов выделения кластерных структур с числом кластеров N = 2, 3, 4. Рассмотрена самосборка кристаллической структуры с участием кластеров-прекурсоров K11 = 0 @11(Li5(LiGe5)) в виде пентагональных пирамид LiGe5 c 5 атомами Li, расположенными на пяти гранях пирамиды, колец K3 = @3(Li2P) и атомов-спейсеров Li. Для кристаллической структуры Ti40P24-oP64 установлены 55 вариантов выделения кластерных структур с числом кластеров N = 2, 3, 4 и 6. Рассмотрена самосборка кристаллической структуры с участием кластеров-прекурсоров в виде 6-атомных сдвоенных тетраэдров K6(4a) = 0@6(Ti4P2), K6(4b) = 0@6 (Ti4P2), 3-атомных колец K3 = 0@3(TiP2) и K3 = 0@3(Ti2P), и тетраэдров K4 = 0@4 (Ti3P). Реконструирован симметрийный и топологический код процессов самосборки 3D структур Li40P4Ge20-oP64 и Ti40P24-oP64 из кластеров-прекурсоров в виде: первичная цепь → слой → каркас.
Full Text

About the authors
В. Я. Шевченко
Институт химии силикатов им. И.В. Гребенщикова РАН
Author for correspondence.
Email: shevchenko@isc.nw.ru
Russian Federation, 199034, Санкт-Петербург, наб. Макарова 2
Г. Д. Илюшин
НИЦ «Курчатовский институт»
Email: gdilyushin@gmail.com
Курчатовский комплекс кристаллографии и фотоники (КККиФ)
Russian Federation, 119333, Москва, Ленинский пр. 59References
- Inorganic crystal structure database (ICSD). Fachinformationszentrum Karlsruhe (FIZ), Germany and US National Institute of Standard and Technology (NIST), USA.
- Villars P., Cenzual K. Pearson’s Crystal Data-Crystal Structure Database for Inorganic Compounds (PCDIC) ASM International: Materials Park, OH.
- Blatov V. A., Shevchenko A.P., Proserpio D.M. Applied Topological Analysis of Crystal Structures with the Program Package ToposPro // Cryst. Growth Des. 2014. V. 14. N 7. P. 3576–3585. https://topospro.com/
- Eickhoff H., Klein W., Toffoletti L., Raudaschl-Sieber G., Fessler T.F. Lithium pentagermanide phosphide. Planar Si(5) and Ge(5) pentagons beside isolated phosphide anions in lithium phosphide tetrelides Li({10+x})Si (5)P and Li({10+x})Ge(5)P. // Zeitschrift fuer Anorganische und Allgemeine Chemie. 2022. V. 648. P. 1–7.
- Carrillo-Cabrera Wilder, Lundstroem Torsten. New phases in the Ti–P and Ti–Cu–P systems. Journal: Acta Chemica Scandinavica, Series A. 1979. V. 33. P. 401–402.
- Hassler E. The Crystal Structure of Nb5P3. // Acta Chemica Scandinavica. 1971. V. 25. P. 129–140.
- Laohavanich S., Thanomkul S., Pramatus S. Structure refinement of niobium arsenide Nb5As3. // Acta Crystallographica B. 1981. V. 37. P. 227–228.
- Thomas J.O., Ersson N.O., Andersson Y. An X-Ray film powder profile refinement of the crystal structure of Ta5P3. // Journal of Applied Crystallography. 1980. V. 13. P. 605–607.
- Rundqvist S., Carlsson B. New phases in the Hf-As system. //Acta Chemica Scandinavica. 1968. V. 22. P. 2395–2396.
- Rustamov P.G., Khasaev J.P., Aliev O.M. Preparation and growth of single crystals of rare earth chalcoantimonides, and their crystallochemical properties. //Inorganic Materials (USSR) (Izv.Akad.Nauk, Neorg.Mater.) 1981. V. 17. P. 1469–1471.
- Aliev O.M., Maksudova T.F., Samsonova N.D., Finkelshtein L.D., Rustamov P.G. Synthesis and properties of compounds of the type A(3) B(6)2X(6)4, A(3) B(5)4X(6)7 and A(3)3 B(5)4 X(6)9 // Inorganic Materials (USSR) (Izv. Akad. Nauk, Neorg. Mater.).1986. V. 22. P. 23–27.
- Zeiringer I., Melnychenko-Koblyuk N., Grytsiv A., Bauer E., Giester G., Rogl P. Phase equilibria, crystal chemistry and physical properties of Au – Ba – Ge clathrates. // Journal of Phase Equilibria and Diffusion. 2011. V. 32(2). P. 115 – 127
- Smetana V., Steinberg S., Card N., Mudring A., Miller G. Crystal Structure and Bonding in BaAu5Ga2 and AeAu4+ xGa3- x (Ae = Ba and Eu): Hexagonal Diamond-Type Au Frameworks and Remarkable Cation/Anion Partitioning in the Ae – Au – Ga Systems. // Inorg. Chem. 2015. V. 54. N. 3. 1010–1018.
- Shevchenko V. Y., Medrish I. V., Ilyushin G. D., Blatov V. A. From clusters to crystals: Scale chemistry of intermetallics. // Structural Chemistry. 2019. V. 30. P. 2015–2027.
- Ilyushin G.D. Intermetallic Compounds NakMn (М = K, Cs, Ba, Ag, Pt, Au, Zn, Bi, Sb): Geometrical and Topological Analysis, Cluster Precursors, and Self-Assembly of Crystal Structures // Crystallography Reports. 2020. V. 65. N 4. P. 539–545.
- Ilyushin G.D. Intermetallic Compounds KnMm (М = Ag, Au, As, Sb, Bi, Ge, Sn, Pb): Geometrical and Topological Analysis, Cluster Precursors, and Self-Assembly of Crystal Structures // Crystallography Reports. 2020. V. 65. N 7. P. 1095–1105.
- Ilyushin G. D. Intermetallic Compounds CsnMk (М = Na, K, Rb, Pt, Au, Hg, Te): Geometrical and Topological Analysis, Cluster Precursors, and Self-Assembly of Crystal Structures // Crystallography Reports. 2022 Vol. 67. I ssu e 7. P. 1075–1087.
Supplementary files
