Синтез гидроксиапатита, замещенного ионами РЗЭ элементов (Lа3+, Cе3+)
- Авторлар: Голованова О.А.1
-
Мекемелер:
- Омский государственный университет им. Ф.М. Достоевского
- Шығарылым: Том 50, № 4 (2024)
- Беттер: 414-426
- Бөлім: Articles
- URL: https://rjonco.com/0132-6651/article/view/681527
- DOI: https://doi.org/10.31857/S0132665124040064
- EDN: https://elibrary.ru/QBSYOF
- ID: 681527
Дәйексөз келтіру
Аннотация
Осуществлен синтез замещенных апатитов с варьированием содержания ионов La3+ и Ce3+. Методами РФА и ИК-спектроскопией доказано образование замещенного гидроксиапатита (La-ГА, Ce-ГА). Показано изменение параметров кристаллических решеток синтезированных фаз, что свидетельствует о замещении ионов Ca2+ на ионы РЗЭ в структуре гидроксиапатита. Методом АЭС с ИСП доказано присутствие ионов РЗЭ в твердых фазах. При изучении резорбции синтезированных образцов выявлено, что катион-замещенные гидроксиапатиты менее растворимы, чем не допированный ГА.
Негізгі сөздер
Толық мәтін

Авторлар туралы
О. Голованова
Омский государственный университет им. Ф.М. Достоевского
Хат алмасуға жауапты Автор.
Email: golovanoa2000@mail.ru
Ресей, 644077, Омская область, г. Омск, пр. Мира, 55 а
Әдебиет тізімі
- Баринов С. М., Комлев С.В. Биокерамика на основе фосфатов кальция. М.: Наука, 2005. С. 38-45.
- Dorozhkin S.V. Calcium orthophosphates (CaPO4): occurrence and properties. Review paper // Progres. Biomat. 2016. V. 5. P. 9–70.
- Mucalo M. Hydroxyapatite (HAp) for biomedical applications. // Amsterdam: Elsevier, 2015. 380 p.
- Doremus R.H. Review: Bioceramics // Journal of Material Science. 1992. V.27. P. 285-297.
- Yilmaza A. Y., Yilmaza S. Wet chemical precipitation synthesis of hydroxyapatite (HA) powders // Ceramics International, 2018. V. 44. No. 8. P. 9703–9710.
- Rodrı´guez-Lugo V., Karthik T. V. K., Mendoza-Anaya D., Rubio-Rosas E., Villasenor Ceron L. S., Reyes-Valderrama M. I. and Salinas-Rodrıguez E. Wet chemical synthesis of nanocrystalline hydroxyapatite flakes: effect of pH and sintering temperature on structural and morphological properties // Royal society open science, 2018. V. 5. No. 8. P. 1–12.
- Sophie Cox. Comparison of techniques for the synthesis of hydroxyapatite // Bioinspired Biomimetic and Nanobiomaterials, 2014. V. 1. No. 1. P. 37–47.
- Cawthray J. F., Creagh A. L., Haynes C. A., Orvig C. Ion exchange in hydroxyapatite with lanthanides // Inorganic Chemistry, 2015. V. 54. No. 4. P. 1440–1445.
- Guoqing Ma. Three common preparation methods of hydroxyapatite // Series materials Science and Engineering, 2018. V. 688. P. 1–12.
- Siqi Tang, Xunchang Fei. Refractory Calcium Phosphate-Derived Phosphorus Fertilizer Based on Hydroxyapatite Nanoparticles for Nutrient Delivery // ACS Appl. Nano Mater, 2021. V. 4. No. 2. P. 1364–1376.
- Suphatchaya Lamkhao, Manlika Phaya, Chutima Jansakun, Nopakarn Chandet, Kriangkrai Thongkorn, Gobwute Rujijanagul, Phuwadol Bangrak and Chamnan Randorn. Synthesis of hydroxyapatite with antibacterial properties using a microwave-assisted combustion method // Scientificc reports, 2019. V. 9. No. 1. P. 1–9.
- Noushin Nasiri and Christian Clarke. Nanostructured Gas Sensors for Medical and Health Applications: Low to High Dimensional Materials // National Library of Medicine, 2019. V. 9. No. 1. P. 449–457.
- Suja George, Dhiraj Mehta and Virendra Kumar Saharan. Application of hydroxyapatite and its modified forms as adsorbents for water defluoridation: an insight into process synthesis // Reviews in Chemical Engineering, 2020. V. 36. No. 3. P. 369–400.
- Thales R. Machadoa, Júlio C. Sczancoskia, Héctor Beltrán-Mirb, Máximo S. Lic, Juan Andrésd, Eloisa Cordoncillob, Edson Leitea, Elson Longoa. Structural properties and self-activated photoluminescence emissions in hydroxyapatite with distinct particle shapes // Ceramics International, 2018. V. 44. No. 1. P. 236–245.
- Kazin, P. E., Pogosova, M. A., Trusov, L. A., Kolesnik, I. V., Magdysyuk, O. V., & Dinnebier, R. E. Crystal structure details of La- and Bi-substituted hydroxyapatites: Evid ence for LaO + and BiO + with a very short metal–oxygen bond // Journal of Solid-State Chemistry 2016 V. 237. P. 349–357.
- Kulwinder Kaur, K.J. Singh, Vikas Anand, Nasarul Islam, Gaurav Bhatia, Namarta Kalia and Jatinder Singh Lanthanide (= Ce, Pr, Nd and Tb) ions substitution at calcium sites of hydroxyl apatite nanop articles as fluorescent bio probes: Experimental and Density Functional Theory Study, Ceramics International, 2017. V. 43. No. 13. P. 10097–10108.
- Wieszczycka, K., Staszak, K., Woźniak-Budych, M. J., & Jurga, S. Lanthanides and tissue engineering strategies for bone regeneration // Coordination Chemistry Reviews, 2019. V. 388. P. 248–267.
- Aleksandra Szcześ, Lucyna Hołysz, Emil Chibowski. Synthesis of hydroxyapatite for biomedical applications // Advances in Colloid and Interface Science, 2017. V. 249. P. 321–330.
- Mohammad Reza Maghsoodi, Larissa Ghodszad, Behnam Asgari Lajayer. Dilemma of hydroxyapatite nanoparticles as phosphorus fertilizer: Potentials, challenges and effects on plants // Environmental Technology & Innovation, 2020. V. 9. P. 1–14.
- Masahiro Okada and Tsutomu Furuzono. Hydroxylapatite nanoparticles: fabrication methods and medical applications // Science and technology of advanced materials, 2012. V. 13. P. 1–14.
- Yuguang Lv, Qi Shi, Yuling Jin, Hengxin Ren, Yushan Qin, Bo ь Wang, Shanshan Song. Preparation and Luminescent Properties of the antibacterial materials of the La3+ Doped Sm3+ – Hydroxyapatite // Journal of Physics, 2018. V. 986. P. 1–5.
- Gopi D., Sathishkumar S., Karthika A., & Kavitha L. Development of Ce3+/ Eu3+ dual-substituted hydroxyapatite coating on surgical grade stainless steel for improved antimicrobial and bioactive properties // Industrial & Engineering Chemistry Research, 2014. V. 53 No. 52. P. 20145–20153.
- Васильев Е.К. Качественный рентгенофазовый анализ. Новосибирск: Наука, 1986. 200 с.
- Егоров-Тисменко Ю. К. Кристаллография и кристаллохимия: учебник для вузов / Под ред. В.С.Урусова. 3-е изд. М.: КДУ. 2014. 588 с
- Tsyganova A.A., Golovanova O.A. Synthesis of a composite material based on a mixture of calcium phosphates and sodium alginate // Inorganic Materials. 2019. Т. 55. № 11. С. 1156 – 1161.
Қосымша файлдар
