Фотолюминофоры на основе пористых стекол, соактивированных cu2+ и y3+: синтез и спектральные свойства
- Авторы: Гирсова М.А.1, Головина Г.Ф.1, Анфимова И.Н.1, Куриленко Л.Н.1, Антропова Т.В.1
-
Учреждения:
- Институт химии силикатов имени И. В. Гребенщикова РАН
- Выпуск: Том 50, № 5 (2024)
- Страницы: 374-395
- Раздел: Статьи
- URL: https://rjonco.com/0132-6651/article/view/679495
- DOI: https://doi.org/10.31857/S0132665124050038
- EDN: https://elibrary.ru/NSSHUZ
- ID: 679495
Цитировать
Аннотация
Синтезированы композиционные материалы на основе матриц из высококремнеземных пористых стекол, активированных ионами Cu2+ и Y3+. Изучено влияние состава композитов (концентрация и соотношение введенной меди и иттрия) и температуры их тепловой обработки (в диапазоне 50–870 °С) на их спектральные свойства. При исследовании образцов методами оптической и ИК спектроскопии обнаружены полосы поглощения, связанные с Cu2+ ионами и обусловленные колебаниями Y–O связей в Y2O3. Установлено, что в зависимости от условий синтеза полученные материалы обладают УФ, сине-зеленой и ИК люминесценцией, обусловленной присутствием различных активных центров (дефекты и кислородные вакансии в CuO, Cu2+ ионы, радикалы и F центры в Y2O3, =Si0 центры, E’ центры (O3≡Si·), нейтральные вакансии кислорода (O3≡Si–Si≡O3), немостиковые кислородные дефектные центры в кремнеземной матрице стекла).
Полный текст

Об авторах
М. А. Гирсова
Институт химии силикатов имени И. В. Гребенщикова РАН
Автор, ответственный за переписку.
Email: girsovama@yandex.ru
Россия, Санкт-Петербург
Г. Ф. Головина
Институт химии силикатов имени И. В. Гребенщикова РАН
Email: girsovama@yandex.ru
Россия, Санкт-Петербург
И. Н. Анфимова
Институт химии силикатов имени И. В. Гребенщикова РАН
Email: girsovama@yandex.ru
Россия, Санкт-Петербург
Л. Н. Куриленко
Институт химии силикатов имени И. В. Гребенщикова РАН
Email: girsovama@yandex.ru
Россия, Санкт-Петербург
Т. В. Антропова
Институт химии силикатов имени И. В. Гребенщикова РАН
Email: girsovama@yandex.ru
Россия, Санкт-Петербург
Список литературы
- Xiao Z., Geng H., Sun C., Jia P., Luo H. Effect of yttrium on properties of copper prepared by powder metallurgy // Advanced Powder Technology. 2015. V. 26. N 4. P. 1079–1086.
- El-Sayed F., Ganesh V., Hussien M.S.A., AlAbdulaal T.H., Zahran H.Y., Yahia I.S., Abdel-wahab M.Sh., Shakir M., Bitla Y. Facile synthesis of Y2O3/CuO nanocomposites for photodegradation of dyes/mixed dyes under UV- and visible light irradiation // Journal of Materials Research and Technology. 2022. V. 19. P. 4867–4880.
- Ma B., Ding H., Jiang F., Hishinuma Y., Luo L., Zhang Y., Wang J., Sheng X., Noto H., Liu J., Shi J., Muroga T., Wu Y. Effect of process control agent on the synthesis of Cu-Y2O3 by mechanical alloying // Nuclear Materials and Energy. 2024. V. 38, article 101599, pp. 1–6.
- Jhansi N., Balasubramanian D., Raman R., Jayavel R. Impact of yttrium on structural, optical and electrical behavior of CuO thin film prepared by JN spray pyrolysis technique for diode application // J. Mater. Sci.: Mater. Electron. 2022. V. 33. P. 22785–22797
- Wang Y.-P., Chiu T.-W., Chang C.-H., Xuan C., Cheng G.J. Transparent and antibacterial Cu2Y2O5 thin films by chemical solution deposition // Thin Solid Films. 2014. V. 570. P. 547–551.
- Baig S., Kumar P., Ngai J., Li Y., Ahmed S. Yttrium Doped Copper (II) Oxide Hole Transport Material as Efficient Thin Film Transistor // ChemPhysChem. 2020. V. 21. N 9. P. 895–907.
- Kang N., Wang Y., Chen Z.W., Tang X., Wang Y., Ding Z., Zhang C., Dai S., Singh C.V., Xie P., Yan M. Understanding enhancement of strong Copper-Yttrium interactions on catalytic properties of Cu/Y-SSZ-13 for NH3-SCR // Chemical Engineering Journal. 2023. V. 475, article 146114, pp. 1–9.
- Wang Y., Cheng L., Zhu M., Zhao J., Hou Y. Investigation on microstructure and electrical properties of CuAl1–xYxO2 ceramics by electrical impedance spectroscopy // Journal of Alloys and Compounds. 2016. V. 654. P. 455–459.
- Kai W., Ho T.H., Jen I.F., Lee P.Y., Yang Y.M., Chin T.S. Oxidation behavior of the (Cu78Y22)98Al2 bulk metallic glass containing Cu5Y-particle composite at 400–600 °C // Intermetallics. 2008. V. 16. N 5. P. 629–635.
- Shen Q, Cai Z, Shao Z, Yang G, Li S. Improved performance of bimetallic oxides CuO–Y2O3 synthesized by sol–gel for methanol steam reforming // J. Am. Ceram. Soc. 2022. V. 105. P. 6839–6850.
- Marappa B., Pattar V., Rudresha M.S. Investigations of structural, optical and electrical properties of Cu2+ doped Y2O3 nanosheets // Chemical Physics Letters. 2019. Vol. 728. P. 67–61.
- Hadjab M., Guskova O., Bennacer H., Ziane M.I., Larbi A.H., Saeed M.A. Ground-state properties of p-type delafossite transparent conducting oxides 2H-CuMO2 (M=Al, Sc and Y): DFT calculations // Materials Today Communications. 2022. V. 32, article 103995, pp. 1–10.
- Carro G., Muñoz A., Monge M.A., Savoini B., Pareja R., Ballesteros C., Adeva P. Fabrication and characterization of Y2O3 dispersion strengthened copper alloys // Journal of Nuclear Materials. 2014. V. 455. N 1-3. P. 655–659.
- Younsi M., Saadi S., Bouguelia A., Aider A., Trari M. Synthesis and characterization of oxygen-rich delafossite CuYO2+x —Application to H2-photo production // Solar Energy Materials and Solar Cells. 2007. V. 91. N 12. P. 1102–1109.
- Racu A.V., Baies R., Popuri S.R., Pascariu M.-C., Niculescu M., Banica R. Rapid combustion synthesis of Cu2Y2O5 as a precursor for CuYO2 delafossite // Materials Today Communications. 2018. V. 14. P. 233–239.
- Sellaiyan S., Devi L.V., Sako K., Uedono A., Sivaji K. Effect of dopant concentration and annealing of Yttrium doped CuO nanocrystallites studied by positron annihilation spectroscopy // Journal of Alloys and Compounds. 2019. V. 788. P. 549–558.
- Długosz O., Lis K., Matyjasik W., Radomski P., Pulit-Prociak J., Banach M. Cu2O Nanoparticles Deposited on Y2O3 and CuO: Synthesis and Antimicrobial Properties // Journal of Cluster Science. 2023. V. 34. P. 2153–2165.
- Korsunska N., Baran M., Poslishchuk Y., Kolomys, O., Stara T., Kharchenko M., Gorban O., Strelchuk V., Venger Ye., Kladko V., Khomenkova L. Structural and Luminescent Properties of (Y,Cu)-Codoped Zirconia Nanopowders // ECS Journal of Solid State Science and Technology. 2015. Vol. 4. N 9. P. N103–N110.
- Antropova T., Girsova M., Anfimova I., Drozdova I., Polyakova I., Vedishcheva N. Structure and spectral properties of the photochromic quartz-like glasses activated by silver halides // J. Non-Cryst. Solids. 2014. V. 401. P. 139–141.
- Antropova T.V., Drozdova I.A. Sintering of the optical porous glasses // Optica Applicata. 2003. V. 33. N 1. P. 13–22.
- Sumathirathne L., Euler W.B. Catalysis of the Thermal Decomposition of Transition Metal Nitrate Hydrates by Poly(vinylidene difluoride) // Polymers. 2021. V. 13, article 3112, pp. 1–12.
- Melnikov P., Nascimento V.A., Consolo L.Z.Z., Silva A.F. Mechanism of thermal decomposition of yttrium nitrate hexahydrate, Y(NO3)3·6H2O and modeling of intermediate oxynitrates // J. Therm. Anal. Calorim. 2013. V. 111. P. 115–119.
- Shiota K., Matsunaga H., Miyake A. Thermal analysis of ammonium nitrate and basic copper(II) nitrate mixtures // J. Therm. Anal. Calorim. 2015. V. 121. P. 281–286.
- Izato Y., Shiota K., Satoh K., Satoh T., Yahata Y., Miyake A. Analyses of the thermal characteristics and gaseous products of guanidine nitrate/basic copper nitrate mixtures using calorimetry with high resolution mass spectrometry // Journal of Analytical and Applied Pyrolysis. 2020. V. 151, article 104918, pp. 1–7.
- Mansour S.A.A. Thermoanalytical investigations of the decomposition course of copper oxysalts. II. Copper (II) nitrate trihydrate // Journal of Thermal Analysis. 1995. V. 45. N 6. P. 1381–1392.
- Oh B.-H., Lee S.-J. Control of particle morphology and size of yttria powder prepared by hydro(solvo)thermal synthesis // Journal of the Korean Ceramic Society. 2022. V. 59. P. 436–443.
- Devi L.V., Selvalakshmi T., Sellaiyan S., Kumar P.S.M., Sankar S. Combustion derived Y doped CuO nanoparticle: its structural, morphological and optical properties // Journal of Materials Science: Materials in Electronics. 2018. V. 29. P. 9387–9396.
- Гирсова М.А., Головина Г.Ф., Куриленко Л.Н., Анфимова И.Н. Спектральные свойства наноструктурированных композиционных стекломатериалов, активированных иттрием в присутствии меди либо висмута // Физика и химия стекла. 2023. Т. 49. № 6. С. 619–631. [Girsova M.A., Golovina G.F., Kurilenko L.N., Anfimova I.N. Spectral properties of nanostructured composite glass materials activated by yttrium in the presence of copper or bismuth // Glass Physics and Chemistry. 2023. V. 49. N 6. P. 625–634].
- Davis K.M., Tomozawa M. An infrared spectroscopic study of water-related species in silica glasses // Journal of Non-Crystalline Solids. 1996. V. 201. P. 177–198.
- Husung R.D., Doremus R.H. The infrared transmission spectra of four silicate glasses before and after exposure to water // Journal of Materials Research. 1990. V. 5. N 10. P. 2209–2217.
- Saad E.A., ElBatal F.H., Fayad A.M., Moustafa F.A. Infrared Absorption Spectra of Some Na-Borosilicate Glasses Containing AgBr and Cu2O (Photochromic Glasses) in Addition to One of Transition Metal Oxide // Silicon. 2011. V. 3. P. 85–95.
- Efimov A.M., Pogareva V.G., Shashkin A.V. Water-related bands in the IR absorption spectra of silicate glasses // Journal of Non-Crystalline Solids. 2003. V. 332. P. 93–114.
- Ellerbrock R., Stein M., Schalle J. Comparing amorphous silica, short-range-ordered silicates and silicic acid species by FTIR // Scientifc Reports. 2022. V. 12, article 11708. pp. 1–8.
- Hubert M., Faber A.J. On the structural role of boron in borosilicate glasses // Phys. Chem. Glasses: Eur. J. Glass Sci. Technol. B. 2014. V. 55. N 3. P. 136–158.
- Haritha A.H., Rao R.R. Sol-Gel synthesis and phase evolution studies of yttrium silicates // Ceramics International. 2019. V. 45. N 18. P. 24957–24964.
- Prnová A., Domanická A., Klement R., Kraxner J., Polovka M., Pentrák M., Galusek D., Šimurka P., Kozánková J. Er- and Nd-doped yttrium aluminosilicate glasses: Preparation and characterization // Optical Materials. 2011. V. 33. N 12. P. 1872–1878.
- Luna-López J.A., Carrillo-López J., Aceves-Mijares M., Morales-Sánchez A., Falcony C. FTIR and photoluminescence of annealed silicon rich oxide films // Superficies y Vacío. 2009. V. 22. N 1. P. 11–14.
- Karthik A.D., Geetha K. Synthesis of Copper Precursor, Copper and its oxide Nanoparticles by Green Chemical Reduction Method and its Antimicrobial Activity // Journal of Applied Pharmaceutical Science. 2013. V. 3. N 5. P. 016–021.
- Arzeian J.M., Hogarth C.A. Some structural, electrical and optical properties of copper phosphate glasses containing the rare-earth europium // Journal of Materials Science. 1991. V. 26. N 19. P. 5353–5366.
- Shanmugapriya T., Balavijayalakshmi J. Role of graphene oxide/yttrium oxide nanocomposites as a cathode material for natural dye‐sensitized solar cell applications // Asia-Pacific Journal of Chemical Engineering. 2021. V. 16. N 2, article e2598. pp. 1–12.
- Rao M.P., Sathishkumar P., Mangalaraja R.V., Asiri A.M., Sivashanmugam P., Anandan S. Simple and low-cost synthesis of CuO nanosheets for visible-light-driven photocatalytic degradation of textile dyes // Journal of Environmental Chemical Engineering. 2018. V. 6. N 2. P. 2003–2010.
- Fuss T., Moguš-Milanković A., Ray C.S., Lesher C.E., Youngman R., Day D.E. Ex situ XRD, TEM, IR, Raman and NMR spectroscopy of crystallization of lithium disilicate glass at high pressure // Journal of Non-Crystalline Solids. 2006. V. 352. P. 4101–4111.
- Anusuya M., Nagaveni A., Jayanthi E., Leelavathi H., Yogeswari B., Poonkodi K., Vimaladevi K., Prabhu V., Pillai M.V. Green-synthesized flattened rice-shaped CuO and metal doped CuO nanoparticles using Bauhinia racemosa Lam. leaves extract and their photocatalytic and biological applications // Inorganic Chemistry Communications. 2024. V. 162, article 112289, pp. 1–14.
- Liu T., Xu W., Bai X., Song H. Tunable silica shell and its modification on photoluminescent properties of Y2O3:Eu3+@SiO2 nanocomposites // J. Appl. Phys. 2012. V. 111, article 064312. pp. 1–8.
- Rachna, Aghamkar P. Morphological and optical investigation of Y2O3:SiO2 powder by wet chemical process // Optical Materials. 2013. V. 36. N 2. P. 337–341.
- Borgohain K., Singh J.B., Rao M.V.R., Shripathi T., Mahamuni S. Quantum size effects in CuO nanoparticles. Physical Review B. 2000. V. 61. N 16. P. 11093–11096.
- Jamila G.S., Sajjad S., Leghari S.A.K., Mahmood T. Role of nitrogen doped carbon quantum dots on CuO nano-leaves as solar induced photo catalyst // Journal of Physics and Chemistry of Solids. 2020. V. 138, article 109233.
- Yu M., Lin J., Fang J. Silica Spheres Coated with YVO4:Eu3+ Layers via Sol-Gel Process: A Simple Method To Obtain Spherical Core-Shell Phosphors // Chem. Mater. 2005. V. 17. P. 1783–1791.
- Gavrilko T., Gnatyuk I., Puchkovska G., Baran J., Marchewka M., Morawska-Kowal T. Application of NIR spectroscopic method to the study of porous glasses filled with liquid crystals // Optica Applicata. 2003. V. 33. N 1. P. 23–32.
- Yu P., Kirkpatrick R.J., Poe B., McMillan P.F., Cong X. Structure of Calcium Silicate Hydrate (C-S-H): Near-, Mid-, and Far-Infrared Spectroscopy // J. Am. Ceram. Soc. 1999. V. 82. N 3. P. 742–748.
- Bartholomew R.F., Butler B.L., Hoover H.L., Wu C.K. Infrared Spectra of a Water-Containing Glass // J. Am. Ceram. Soc. 1980. V. 63. P. 481–485.
- Humbach O., Fabian H., Grzesik U., Haken U., Heitmann W. Analysis of OH absorption bands in synthetic silica // Journal of Non-Crystalline Solids. 1996. V. 203. P. 19–26.
- Bae B.-S., Weinberg M.C. Optical absorption of copper phosphate glasses in the visible spectrum // Journal of Non-Crystalline Solids. 1994. V. 168. N 3. P. 223–231.
- Кирютенко В.М., Киселев А.В., Лыгин В.И., Щепалин К.Л. Исследование свойств поверхности пористого стекла методом инфракрасной спектроскопии // Кинетика и катализ. 1974. Т. 15. № 6. С. 1584–1588.
- Bauer U., Behrens H., Fechtelkord M., Reinsch S., Deubener J. Water- and boron speciation in hydrous soda-lime-borate glasses // Journal of Non-Crystalline Solids. 2015. V. 423–424. P. 58–67.
- Schmidt B.C. Effect of boron on the water speciation in (alumino)silicate melts and glasses // Geochimica et Cosmochimica Acta. 2004. V. 68. N 24. P. 5013–5025.
- Zotov N., Keppler H. The influence of water on the structure of hydrous sodium tetrasilicate glasses // American Mineralogist. 1998. V. 83. N 7-8. P. 823–834.
- Stefan R., Culea E., Pascuta P. The effect of copper ions addition on structural and optical properties of zinc borate glasses // Journal of Non-Crystalline Solids. 2012. Vol. 358. N 4. P. 839–846.
- Möncke D., Ehrt D. Charge transfer transitions in glasses - Attempt of a systematic review // Optical Materials: X. 2021. V. 12, article 100092, pp. 1–18.
- Rachna, Aghamkar P. Morphological and optical investigation of Y2O3:SiO2 powder by wet chemical process // Optical Materials. 2013. V. 36. P. 337–341.
- Sokolov V.O., Sulimov V.B. Theory of Twofold Coordinated Silicon and Germanium Atoms in Solid Silicon Dioxide // Phys. Stat. Sol. B. 1994. V. 186. N 3. P. 185–198.
- Зацепин А.Ф. Статика и динамика возбужденных состояний кислородно-дефицитных центров в SiO2 // Физика твердого тела. 2010. Т. 52. Вып. 6. С. 1104–1114. (Engl.Transl.: Zatsepin A.F. Statics and dynamics of excited states of oxygen-deficient centers in SiO2 // Physics of the Solid State. 2010.Vol. 52. N 6. P. 1176–1187.)
- Соломонов В.И., Осипов В.В., Шитов В.А., Лукьяшин К.Е., Бубнова А.С. Собственные центры люминесценции керамических иттрий-алюминиевого граната и оксида иттрия // Оптика и спектроскопия. 2020. Т. 128. Вып. 1. С. 5–9. (Engl.Transl.: Solomonov V.I., Osipov V.V., Shitov V.A., Luk’yashin K.E., Bubnova A.S. Intrinsic Luminescence Centers in Yttrium–Aluminum Garnet and Yttrium Oxide Ceramics // Optics and Spectroscopy. 2020. V. 128. N 1. P. 1–5.)
- Chand P., Gaur A., Kumar A. Structural, optical and ferroelectric behavior of CuO nanostructures synthesized at different pH values // Superlattices and Microstructures. 2013. V. 60. P. 129–138.
- Осипов В.В., Расулева А.В., Соломонов В.И. Люминесценция оксида иттрия // Оптика и спектроскопия. 2008. Т. 105. № 4. С. 578–584. (Engl.Transl.: Osipov V.V., Rasuleva A.V., Solomonov V.I. Luminescence of Pure Yttria // Optics and Spectroscopy. 2008. V. 105. N 4. P. 524–530.)
- Toboonsung B., Singjai P. Formation of CuO nanorods and their bundles by an electrochemical dissolution and deposition process // Journal of Alloys and Compounds. 2011. V. 509. N 10. P. 4132–4137.
- López J.A., López J.C., Valerdi D.E.V., Salgado G.G., Díaz-Becerril T., Pedraza A.P., Gracia F.J.F. Morphological, compositional, structural, and optical properties of Si-nc embedded in SiOx films // Nanoscale Research Letters. 2012. V. 7. N 1, article 604, pp. 1–10.
- Gong-Ru L., Chung-Jung L., Chi-Kuan L., Li-Jen C., Yu-Lun C. Oxygen defect and Si nanocrystal dependent white-light and near-infrared electroluminescence of Si-implanted and plasma-enhanced chemical-vapor deposition-grown Si-rich SiO2 // Journal of Applied Physics. 2005. V. 97, article 094306, pp. 1–8.
- Zyubin A.S., Glinka Y.D., Mebel A.M., Lin S.H., Hwang L.P., Chen Y.T. Red and near-infrared photoluminescence from silica-based nanoscale materials: Experimental investigation and quantum-chemical modeling // The Journal of Chemical Physics. 2002. V. 116. N 1. P. 281–294.
- Hallstedt B., Risold D., Gauckler L.J. Thermodynamic assessment of the copper-oxygen system // Journal of Phase Equilibria. 1994. V. 15. N 5. P. 483–499.
- Scarlat O., Zaharescu M. Thermal studies in CuO–Cu2O–SnO2 system at two oxygen pressures, as observed by DTA/TG experiments // Journal of Thermal Analysis and Calorimetry. 2002. V. 68. P. 851–860.
Дополнительные файлы
