Quantum chemical simulation of reactions of hydrogen and oxygen with a gold–nickel bimetallic nanocoating

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

Quantum chemical calculations are performed to determine the heats of hydrogenation for the simplest nanosized Au3/Ni2+ bimetallic system via three possible reaction pathways. It is shown that the reaction pathway releasing maximum energy is Au3/Ni2+ + H2 → (Au3H2)/Ni2+ with a heat of reaction of 43.7 kcal/mol. Quantum chemical methods are also used to calculate the heats of reaction for several reaction pathways between Au3/Ni2+ and oxygen. It is found that the pathway that releases maximum energy adds one O atom to Au3H2 while the other one combines with nickel, (Au3H2)/Ni2+ + O₂ → (Au3H2–O)/(Ni2O)+, with a heat of reaction of 39.0 kcal/mol. The reaction mechanism and energy budget are determined for the elementary steps involved in the production of gold Au3 and water from the oxide (Au3H2–O). Based on the calculated results, an explanation is proposed for experimental results on successive exposure of a gold–nickel bimetallic nanocoating to hydrogen and oxygen. Since contact between gold and nickel results in negatively charged gold and positively charged nickel particles, the calculations are performed for negatively and positively charged gold- and nickel-containing particles, respectively.

Full Text

Restricted Access

About the authors

M. V. Grishin

Semenov Federal Research Center for Chemical Physics, Russian Academy of Sciences

Email: slutsky@chph.ras.ru
Russian Federation, Moscow

A. K. Gatin

Semenov Federal Research Center for Chemical Physics, Russian Academy of Sciences

Email: slutsky@chph.ras.ru
Russian Federation, Moscow

S. Yu. Sarvadii

Semenov Federal Research Center for Chemical Physics, Russian Academy of Sciences

Email: slutsky@chph.ras.ru
Russian Federation, Moscow

V. G. Slutskii

Semenov Federal Research Center for Chemical Physics, Russian Academy of Sciences

Author for correspondence.
Email: slutsky@chph.ras.ru
Russian Federation, Moscow

D. T. Tastaibek

Semenov Federal Research Center for Chemical Physics, Russian Academy of Sciences

Email: slutsky@chph.ras.ru
Russian Federation, Moscow

V. A. Kharitonov

Semenov Federal Research Center for Chemical Physics, Russian Academy of Sciences

Email: slutsky@chph.ras.ru
Russian Federation, Moscow

References

  1. Ellert O.G., Novotortsev V.M., Tsodikov M.V., Nikolaev S.A. // Rus. Chem. Rev. 2014. V. 83. № 8. P. 718. https://doi.org/10.1070/rc2014v083n08abeh004432
  2. Alshammari H., Miedziak P. J., Davies T. E. et al.// Catal. Sci. Technol. 2014. V. 4. № 4. P. 908. https://doi.org/10.1039/c4cy00088a
  3. Luza L., Rambor C. P., Gual A. et al.// ACS Catalysis. 2017. V. 7. № 4. P. 2791. https://doi.org/10.1021/acscatal.7b00391
  4. Nikolaev S.A., Smirnov V.V., Vasil’kov A.Y., Podshibikhin V.L. // Kinetics and Catalysis. 2010. Т. 51. № 3. P. 375. https://doi.org/ 10.1134/S0023158410030080
  5. Hallett-Tapley G.L., D’Alfonso C., Pacioni N.L. et al.// Chem. Commun. 2013. V. 49. № 86. P. 10073. https://doi.org/10.1039/c3cc41669k
  6. Simakova I.L., Solkina Yu.S., Moroz B.L. et al. // Appl. Catal. A. 2010. V. 385. P. 136. https://doi.org/10.1016/j.apcata.2010.07.002
  7. Dykman L.A., Khlebtsov N.G. // Acta Naturae. 2011. V. 3. № 2. P. 34. https://doi.org/10.32607/20758251-2011-3-2-34-55
  8. Zhang Y., Chu W., Foroushani A. D. et al.// Materials. 2014. V. 7. P. 5169. https://doi.org/10.3390/ma7075169
  9. Lee J. S. // Gold Bulletin. 2010. V. 43. № 3. P. 189. https://doi.org/10.1007/BF03214986
  10. Ananikov V.P., Khemchyan L.L., Ivanova Y.V. et al. // Russ. Chem. Rev. 2014. V. 83. № 10. P. 885. https://doi.org/10.1070/rcC2014v83n10abeh004471
  11. Ashraf I., Skandary S., Khaywah M. Y. et al.// Photonics. 2015. V. 2. № 3. P. 838. https://doi.org/10.3390/photonics2030838
  12. Stolle H.L.K.S., Kluitmann J.J., Csáki A., Köhler J.M., Fritzsche W.S. // Catalysts. 2021. V. 11. P. 1442. https://doi.org/ 0.3390/catal11121442
  13. Chistyakova P.A., Chistyakov A.V., Nikolaev S.A. et al. // Pet. Chem. 2022. V. 62. P. 1107. https://doi.org/10.1134/S0965544122090018
  14. Smirnov V.V., Lanin S.N., Nikolaev S.A. et al.// Russ. Chem. Bull. 2005. V. 54. № 10. P. 2286. https://doi.org/10.1007/s11172-006-0111-8
  15. Grishin M.V., Gatin A.K., Dokhlikova N.V. et al.// Nanotechnol. Russ. 2016. V. 11. № 11–12. P. 727. https://doi.org/ 10.1134/S1995078016060112
  16. Gatin A.K., Grishin M.V., Dokhlikova N.V. et al. // Russ. Chem. Bull. 2014. V. 63. № 8. P. 1696. https://doi.org/10.1007/s11172-014-0655-y
  17. Ozaki T. // Phys. Rev. B. 2003. V. 67. P. 155108. https://doi.org/10.1103/Phys/ RevB.67.155108
  18. Ozaki T., Kino H. // Phys. Rev. B. 2004. V. 69. P. 195113. https://doi.org/10.1103/PhysRevB.69.195113
  19. Grishin M.V., Baymukhambetova D.T., Gatin A.K. et al.// Khim. Fizika. 2025 V. 44. № 1. P. 44.

Supplementary files

Supplementary Files
Action
1. JATS XML
2. Fig. 1. Structures of Au₃⁻, Ni₂⁺ clusters and their hydrides. Black marks – hydrogen. Distances in Å.

Download (62KB)
3. Fig. 2. Structures of oxides of negatively charged clusters (Au₃H₂)– and positively charged clusters Ni₂⁺. Black marks – hydrogen, white marks – oxygen. Distances in Å.

Download (94KB)
4. Fig. 3. Mechanism of transformation of (Au₃H₂–O)– into Au₃⁻ and H₂O. Gray marks – Au, white – oxygen, black – hydrogen. Distances in Å. Heat effects of elementary reactions in kcal/mol are given in square brackets.

Download (187KB)

Copyright (c) 2025 Russian Academy of Sciences