Auditory System of Blood-Sucking Mosquitoes (Diptera, Culicidae)

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

This review comprehensively explores the morphology of the mosquito auditory organs – antennae and Johnston’s organs. Spatial and frequency characteristics of auditory sensory neurons within Johnston’s organs are discussed, as well as the mechanisms of mechanotransduction in these neurons. The review presents findings from studies investigating the aspects of mosquito perception of acoustic signals when their auditory system is subjected to vibrations generated by flapping wings. Additionally, the review discusses the significance of acoustic communication in the reproductive behavior of mosquitoes.

Full Text

Restricted Access

About the authors

D. N. Lapshin

Institute for Information Transmission Problems (Kharkevich Institute)

Author for correspondence.
Email: lapshin@iitp.ru
Russian Federation, Moscow

References

  1. Vasil’eva O.L., Korzikov V. A., Gabaraeva E. A., Rogulenko A. V., Vinnikova O. N., Ovsjannikova L. V. Obzor fauny krovososushchikh komarov (Culicidae) Kaluzhskoy oblasti – risk perenoschikov vozbuditeley zabolevaniy cheloveka [The review of mosquito fauna (Diptera, Culicidae) as possible vectors of dangerous diseases of humans]. Meditsinskaya parazitologiya i parazitarnyye bolezni. 2019. V. 3. P. 3–9. doi: 10.33092/0025-8326mp2019.3.3-9 (In Russian).
  2. Vorontsov D. D., Lapshin D. N. Vliyanie oktopamina na chastotnuyu nastroyku slukhovoy sistemy komarov Culex pipiens pipiens (Diptera, Culicidae) [Effect of octopamine on the frequency tuning of the auditory system in Culex pipiens pipiens mosquito (Diptera, Culicidae)]. Sensornye sistemy [Sensory systems]. 2023. V. 37(3). P. 244–257. doi: 10.31857/S0235009223030071 (In Russian).
  3. Kazhan V. G., Moshkov, P. A., Samokhin, V. F. Prirodnyy fon pri provedenii akusticheskikh ispytaniy samoletov na aerodrome bazy maloy aviatsii. Nauka i obrazovaniye. [Ambient background noise under acoustic tests of aircrafts at the local aerodrome]. Nauka i obrazovanie. MGTU im. N.E. Baumana. Elektron. zhurn. [Science and Education of the Bauman MSTU]. 2015. V. 7. P. 146–170. doi: 10.7463/0715.0782827 (In Russian).
  4. Lapshin D. N. Chastotnyye kharakteristiki slukhovykh interneyronov samtsov komarov Culex pipiens pipiens L. (Diptera, Culicidae). [Frequency threshold curves of auditory interneurons of male mosquitoes Culex pipiens pipiens L. (Diptera, Culicidae)]. Doklady Akademii Nauk. [Doklady Biological Sciences]. 2011. V. 439(2). P. 279–281. (In Russian).
  5. Lapshin D. N. Bioakustika komarov: funktsionirovaniye slukhovoy sistemy samtsov Culex pipiens pipiens L. v usloviyakh imitatsii poleta [Mosquito bioacoustics: auditory processing in males of Culex pipiens pipiens L. (Diptera, Culicidae) during flight simulation]. Entomologicheskoye obozreniye [Entomological Review]. 2012a. V. 91(1). P. 36–57. (In Russian).
  6. Lapshin D. N. Slukhovaya sistema samok krovososushchikh komarov (Diptera, Culicidae): akusticheskoye vospriyatiye v usloviyakh imitatsii poleta [Auditory system of blood-sucking mosquito females (Diptera, Culicidae): acoustic perception during the flight simulation]. Entomologicheskoye obozreniye [Entomological Review]. 2012b. V. 91(3). P. 465–484. (In Russian).
  7. Lapshin D. N., Vorontsov D. D. Nizkochastotnyye zvuki otpugivayut samtsov komarov Aedes diantaeus N.D.K. (Diptera, Culicidae) [Low-frequency sounds repel male mosquitoes Aedes diantaeus N.D.K. (Diptera, Culicidae)]. Entomologicheskoye obozreniye [Entomological Review]. 2018. V. 97(2). P. 194–202. (In Russian).
  8. Lapshin D. N., Vorontsov D. D. Funktsii slukhovoy sistemy samok krovososushchikh komarov (Diptera, Culicidae) [Functions of the auditory system of female mosquitoes (Diptera, Culicidae)]. Entomologicheskoye obozreniye [Entomological Review]. 2023. V. 102(3). P. 205–221. (In Russian).
  9. Lependin D. F. Akustika [Acoustics]. Moscow. Vysshaya shkola Publ., 1978. 448 p. (In Russian).
  10. Tamarina N. A., Zhantiev R. D., Fyodorova M. V. Chastotnyye kharakteristiki zvukovykh poletov i dzhonstonovykh organov simpatricheskikh komarov roda Aedes (Culicidae). [Frequency characteristics of flight sounds and Johnston’s organs of sympatric mosquitoes of the genus Aedes (Culicidae)]. Parazitologiya [Parasitology]. 1980. V. 14. P. 398–402. (In Russian).
  11. Fyodorova M. V., Lopatina Yu.V., Khutorecskaya N. V., Lazorenko V. V., Platonov A. E. Izucheniye fauny krovososushchikh komarov (Diptera, Culicidae) Volgograda v svyazi so vspyshkoy likhoradki Zapadnogo Nila v Volgogradskoy oblasti v 1999 g. [The study of mosquito fauna (Diptera, Culicidae) in Volgograd city in light of the outbreak of West Nile fever in Volgograd region, 1999]. Parazitologiya [Parasitology]. 2004. V. 38 (3). P. 209–218. (In Russian).
  12. Fedorova M. V., Ryabova T. E., Shaposhnikova L. I., Lopatina Yu. V., Sebentsova A. N., Yunicheva Yu.V. Invazivnyye vidy komarov na territorii g. Sochi: mesto razvitiya preimaginal’nykh stadiy i metody ucheta [Invasive mosquito species on the territory of Sochi: larval development places and counting methods]. Meditsinskaya parazitologiya i parazitarnyye bolezni [Medical parasitology and parasitic diseases]. 2017. V. 4. P. 9–15. (In Russian).
  13. Fedorova M. V., Shvets O. G., Yunicheva Yu.V., Medya nik I. M., Ryabova T. E., Otstavnova A. D. Sovremennaya granitsa rasprostraneniya invazivnykh komarov Aedes (Stegomyia) aegypti (L.,1762) i Aedes (Stegomyia) albopictus (Skuse, 1895) na yuge Krasnodarskogo kraya Rossii [Dissemination of invasive mosquito species, Aedes (Stegomyia) aegypti (L., 1762) and Aedes (Stegomyia) albopictus (Skuse, 1895) in the south of Krasnodar region, Russia]. Problemy osobo opasnykh infektsiy [Problems of Particularly Dangerous Infections]. 2018. T. 2. P. 101–105. doi: 10.21055/0370-1069-2018-2-101-105 (In Russian).
  14. Kharkevich A. A. Osnovy radiotekhniki. Moscow. Svyaz’izdat Publ., 1962. 350 p. (In Russian).
  15. Andrés M., Seifert M., Spalthoff C., Warren B., Weiss L., Giraldo D., Winkler M., Pauls S., Go M. Göpfert M. C. Auditory efferent system modulates mosquito hearing. Current Biology. 2016. V. 26. P. 1–9. doi: 10.1016/j.cub.2016.05.077
  16. Aldersley A., Champneys A. R., Homer M., Robert D. Quantitative analysis of harmonic convergence in mosquito auditory interactions. J. Royal Society Interface. 2016. V. 13. № 117. P. 20151007. doi: 10.1098/rsif.2015.1007
  17. Arthur B. J., Wyttenbach R. A., Harrington L. C., Hoy R. R. Neural responses to one- and two-tone stimuli in the hearing organ of the dengue vector mosquito. J. Experimental Biology. 2010. V. 213. P. 1376–1385. doi: 10.1242/jeb.033357
  18. Bartlett-Healy K., Crans W., Gaugler R. Phonotaxis to amphibian vocalizations in Culex territans (Diptera: Culicidae). Annals of the Entomological Society of America. 2008. V. 101. P. 95–103. doi: 10.1603/0013-8746(2008)101[95:PTAVIC]2.0.CO;2
  19. Bartholomew G. A., Heinrich B. A field study of flight temperatures in moths in relation to body weight and wing loading. J. Experimental Biology. 1973. V. 58. P. 123–135. doi: 10.1242/jeb.58.1.123
  20. Belton P. Trapping mosquitoes with sound. Proceedings California Mosquito Control Association. 1967. V. 35. P. 98.
  21. Belton P. An analysis of direction finding in male mosquitoes. Experimental Analysis of Insect Behaviour. Ed. Browne L. B. Berlin/Heidelberg, Germany, New York, NY, USA. Springer, 1974. P. 139–148.
  22. Boo K. S., Richards A. G. Fine structure of the scolopidia in the Johnston’s organ of male Aedes aegypti (L.) (Diptera: Culicidae). Int. J. Insect Morphol. Embryol. 1975a. V. 4. P. 549–566. doi: 10.1016/0020-7322(75)90031-8
  23. Boo K. S., Richards A. G. Fine structure of scolopidia in Johnston’s organ of female Aedes aegypti compared with that of the male. J. Insect Physiol. 1975b. V. 21. P. 1129–1139. doi: 10.1016/0022-1910(75)90126-2
  24. Borkent A., Grimaldi D. A. The Earliest Fossil Mosquito (Diptera: Culicidae), in mid-cretaceous burmese amber. Annals of the Entomological Society of America. 2004. V. 97. № 5. P. 882–888. doi: 10.1603/0013-8746(2004)097[0882:TEFMDC]2.0.CO;2.
  25. Borkent A., Belton P. Attraction of female Uranotaenia lowii (Diptera: Culicidae) to frog calls in Costa Rica. The Canadian Entomologist. 2006. V. 138. P. 91–94. doi: 10.4039/n04-113.
  26. Cator L. J., Arthur B. J., Harrington L. C., Hoy R. R. Harmonic convergence in the love songs of the dengue vector mosquito. Science. 2009. V. 323. P. 1077–1079. doi: 10.1126/science.1166541
  27. Charlwood J. D., Jones M. D.R. Mating behaviour in the mosquito, Anopheles gambiae s.1. Close range and contact behaviour. Physiological Entomology. 2008. V. 4. № 2. P. 111–120. doi: 10.1111/j.1365-3032.1979.tb00185.x
  28. Clements A. N. The biology of mosquitoes Vol. 2 Sensory Reception and Behaviour. New York. CABI Publishing, 1999. 758 p.
  29. Clemens J., Ozeri-Engelhard N., Murthy M. Fast intensity adaptation enhances the encoding of sound in Drosophila. Nat. Commun. 2018. V. 9. 134. doi: 10.1038/s41467-017-02453-9.
  30. Feugère L., Roux O., Gibson G. Behavioural analysis of swarming mosquitoes reveals high hearing sensitivity in Anopheles coluzzii. J. Experimental Biology. 2022. V. 225. № 5. jeb243535. doi: 10.1242/jeb.243535
  31. Finetti L., Paluzzi J. P., Orchard I., Lange A. B. Octopamine and tyramine signalling in Aedes aegypti: Molecular characterization and insight into potential physiological roles. PloS one. 2023. V. 18. № 2. e0281917. doi: 10.1371/journal.pone.0281917
  32. Fitch J. L., Holbrook A. Modal vocal fundamental frequency of young adults. Archives of Otolaryngology. 1970. V. 92. P. 379–382. doi: 10.1001/archotol.1970.04310040067012
  33. Georgiades M., Alampounti C. A., Somers J., Su M., Ellis D., Bagi J., Ntabaliba W., Moore S., Albert J.T., Andrés M. A novel beta-adrenergic like octopamine receptor modulates the audition of malaria mosquitoes and serves as in secticide. https://www.biorxiv.org/content/10.1101/ 2022.08.02.502538v1 (accessed 08.02.2022) (preprint). doi: 10.1101/2022.08.02.502538
  34. Gibson G., Russell I. Flying in tune: sexual recognition in mosquitoes. Current Biology. 2006. V. 16. P. 1311–1316. doi: 10.1016/j.cub.2006.05.053
  35. Gibson G., Warren B., Russell I. Humming in tune: sex and species recognition by mosquitoes on the wing. Journal of the Association for Research in Otolaryngology. 2010. V. 11. P. 527–540. doi: 10.1007/s10162-010-0243-2
  36. Gokhale A., Wirschell M., Sale W. S. Regulation of dynein-driven microtubule sliding by the axonemal protein kinase CK1 in Chlamydomonas flagella. J. Cell Biol. 2009. V. 186. №. 6. P. 817–824. doi: 10.1083/jcb.200906168
  37. Göpfert M. C., Robert D. Nanometre-range acoustic sensitivity in male and female mosquitoes. Proc. R. Soc. Lond. B. 2000. V. 267. P. 453–457. doi: 10.1098/rspb.2000.1021
  38. Göpfert M. C., Robert D. Active auditory mechanics in mosquitoes. Proc. R. Soc. Lond. B. 2001. V. 268. P. 333–339. doi: 10.1098/rspb.2000.1376
  39. Göpfert M. C., Robert D. Motion generation by Drosophila mechanosensory neurons. PNAS. 2003. V. 100. № 9. P. 5514–5519. doi: 10.1073/pnas.0737564100
  40. Göpfert M. C., Briegel H., Robert D. Mosquito hearing: sound-induced antennal vibrations in male and female Aedes aegypti. J. Experimental Biology. 1999. V. 202. P. 2727–2738. doi: 10.1242/jeb.202.20.2727
  41. Göpfert M. C., Humphris A. D.L., Albert J. T., Robert D., Hendrich O. Power gain exhibited by motile mechanosensory neurons in Drosophila ears. PNAS. 2005. V. 102. № 2. P. 325–330. doi: 10.1073/pnas.0405741102
  42. Hart M., Belton P., Kuhn R. The Risler Manuscript. European Mosquito Bulletin. 2011. V. 29. P. 103–111.
  43. Ignell R., Dekker T., Ghaninia M., Hansson B. S. Neuronal architecture of the mosquito deutocerebrum. J. Comparative Neurology. 2005. V. 493. P. 207–240. doi: 10.1002/cne.20800
  44. Jackson J. C., Robert D. Nonlinear auditory mechanism enhances female sounds for male mosquitoes. PNAS. 2006. V. 103. № 45. P. 16734–16739. doi: 10.1073/pnas.0606319103
  45. Johnston C. Auditory apparatus of the Culex mosquito. quart. J. Microscop. Sci. 1855. V. 3. P. 97–102. doi: 10.1242/jcs.s1-3.10.97
  46. Kamikouchi A., Inagaki H. K., Effertz T., Hendrich O., Fiala A., Göpfert M. C., Ito K. The neural basis of Drosophila gravity sensing and hearing. Nature. 2009. V. 458, P. 165–171. doi: 10.1038/nature07810
  47. Kamimura S., Kamiya R. High-frequency nanometre-scale vibration in ‘quiescent’ flagellar axonemes. Nature. 1989. V. 340. P. 476–478. doi: 10.1038/340476a0
  48. Kernan M., Zuker C. Genetic approaches to mechanosensory transduction. Current Opinion in Neurobiology. 1995. V. 5. № 4. P. 443–448. doi: 10.1016/0959-4388(95)80003-4
  49. Köppl C., Мanley G. A. Spontaneous otoacoustic emissions in the bobtail lizard. I. General characteristics. Hear. Res. 1993. V. 71. P. 157–169. doi: 10.1016/0378-5955(93)90031-u
  50. Lapshin D. N. Mosquito bioacoustics: auditory proces sing in males of Culex pipiens pipiens L. (Diptera, Culicidae) during flight simulation. Entomological Review. 2012. V. 92. № 6. P. 605–621. doi: 10.1134/S0013873812060024
  51. Lapshin D. N. Auditory system of blood-sucking mosquito females (Diptera, Culicidae): acoustic perception during the flight simulation. Entomological Review. 2013. V. 93. № 2. P. 135–149. doi: 10.1134/S0013873813020012
  52. Lapshin D. N., Vorontsov D. D. Frequency tuning of individual auditory receptors in female mosquitoes (Diptera, Culicidae). J. Insect Physiol. 2013. V. 59. № 8. P. 828–839. doi: 10.1016/j.jinsphys.2013.05.010
  53. Lapshin D. N., Vorontsov D. D. Frequency organization of the Johnston organ in male mosquitoes (Diptera, Culicidae). J. Experimental Biology. 2017. V. 220. P. 3927–3938. doi: 10.1242/jeb.152017
  54. Lapshin D. N., Vorontsov D. D. Low-frequency sounds repel male mosquitoes Aedes diantaeus N.D.K. (Diptera, Culicidae). Entomological Review. 2018. V. 98. № 3. P. 266–271. doi: 10.1134/S0013873818030028
  55. Lapshin D. N., Vorontsov D. D. Directional and frequency characteristics of auditory neurons in Culex male mosquitoes. J. Experimental Biology. 2019. V. 222. jeb208785. doi: 10.1242/jeb.208785
  56. Lapshin D. N., Vorontsov D. D. Frequency tuning of swarming male mosquitoes (Aedes communis, Culicidae) and its neural mechanisms. J. Insect Physiology. 2021. V. 132. doi: 10.1016/j.jinsphys.2021.104233
  57. Lapshin D. N., Vorontsov D. D. Mapping the auditory space of Culex pipiens female mosquitoes in 3D. Insects. 2023a. V. 14. № 743. P. 1–23. doi: 10.3390/insects14090743
  58. Lapshin D. N., Vorontsov D. D. Functions of the auditory system of female mosquitoes (Diptera, Culicidae). Entomological Review. 2023b. V. 103. №. 3, P. 251–262. doi: 10.1134/S0013873823030016
  59. Loh Y. M., Su M. P., Ellis D. A. and Andrés M. The auditory efferent system in mosquitoes. Frontiers in Cell and Developmental Biology. 2023. V. 11-1123738.11. P. 1–15. doi: 10.3389/fcell.2023.1123738
  60. McIver S. B. Sensilla mosquitoes (Diptera: Culicidae). Med. Entomol. 1982. V. 19. № 5. P. 489–535. doi: 10.1093/jmedent/19.5.489
  61. Manley G. A., Yates G. A., Köppl C. Auditory peripheral resonance: evidence for a simple resonance phenomenon in the lizard Tiliqua. Hear. Res. 1988. V. 33. P. 181–190. doi: 10.1016/0378-5955(88)90031-7
  62. Matsuo E., Kamikouchi A. Neuronal encoding of sound, gravity, and wind in the fruit fly. J. Comp. Physiol. A. Neuroethol. Sens. Neural. Behav. Physiol. 2013. V. 199. P. 253–262. doi: 10.1007/s00359-013-0806-x
  63. Menda G., Nitzany E. I., Shamble P. S., Wells A., Harrington L. C., Miles R. N., Hoy R. R. The long and short of hearing in the mosquito Aedes aegypti. Current Biology. 2019. V. 29 № 4 P. 709–714. doi: 10.1016/j.cub.2019.01.026
  64. Nadrowski B., Martin P., Jülicher F. Active hair-bundle motility harnesses noise to operate near an optimum of mechanosensitivity. PNAS. 2004. V. 101. № 33. P. 12195–12200. doi: 10.1073/pnas.0403020101
  65. Nadrowski B., Albert J. T., Göpfert M. C. Transducer-based force generation explains active process in Drosophila hearing. Current Biology. 2008. V. 18. P. 1365–1372. doi: 10.1016/j.cub.2008.07.095
  66. Nadrowski B., Göpfert M. C. Level-dependent auditory tuning: transducer-based active processes in hearing and best-frequency shifts. Communicative and Integrative Biology. 2009. B. 2. Ausgabe 1. S. 7–10. doi: 10.4161/CIB.2.1.7299
  67. Ogawa K., Sato H. Relationship between male acoustic response and female wingbeat frequency in a chironomid midge, Chironomus yoshimatsui (Diptera: Chironomidae). Medical Entomology and Zoology. 1993. V. 44. № 4. P. 355–360. doi: 10.7601/mez.44.355
  68. Pennetier C., Warren B., Dabiré K. R., Russell I. J., Gibson G. “Singing on the wing” as a mechanism for species recognition in the malarial mosquito Anopheles gambiae. Current Biology. 2010. V. 20. P. 131–136. doi: 10.1016/j.cub.2009.11.040
  69. Risler H., Schmidt K. Der Feinbau der Scolopidien im Johnstonschen Organ von Aedes aegypti L. Z. Naturforschung. 1967. B. 22b. S. 759–762.
  70. Robert D., Göpfert M. C. Novel schemes for hearing and orientation in insects. Current Opinion in Neurobiology. 2002. V. 12. P. 715–720. doi: 10.1016/s0959-4388(02)00378-1
  71. Roeder K. D., Treat A. E. Ultrasonic reception by the tympanic organ of noctuid moths. J. Experimental Zoology. 1957. V.134. P.127–158. doi: 10.1002/jez.1401340107
  72. Römer F. Einfluss von Temperatur und Alter auf die Flugtonhöhe beim Schwärmen von Chironomus plumosus L. Rev. Suisse Zool. 1970. Bd. 77. S. 603–616.
  73. Roth L. M. A study of mosquito behavior. An experimental laboratory study of the sexual behavior of Aedes aegypti (Linnaeus). The American Midland Naturalist. 1948. V. 40. P. 265–352.
  74. Shimozawa T., Kanou M. The aerodynamics and sensory physiology of range fractionation in the cereal filiform sensilla of the cricket Gryllus bimaculatus. J. Соmр. Physiol. 1984. V. 155, № 4. P. 495–505. doi: 10.1007/BF00611914
  75. Shingyoji C., Higuchi H., Yoshimura M., Katayama E., Yanagida T. Dynein arms are oscillating force generators. Nature. 1998. V. 393. № 6686. P. 711–714. doi: 10.1038/31520.
  76. Simões P. M.V., Robert A. Ingham R. A., Gibson G., Russell I. J. A role for acoustic distortion in novel rapid frequency modulation behaviour in free-flying male mosquitoes. J. Experimental Biol. 2016. V. 219. P. 2039–2047. doi: 10.1242/jeb.135293
  77. Sotavalta O. The flight-tone (wing-stroke frequency) of insects. Acta Entomol. Fenn. 1947. V. 4. P. 1–117.
  78. Su M.P., Andrés M., Boyd-Gibbins N., Somers J., Albert J. T. Sex and species specific hearing mechanisms in mosquito flagellar ears. Nature Communications. 2018. V. 9. P. 3911. doi: 10.1038/s41467-018-06388-7
  79. Tischner H. Über den Gehörsinn von Stechmücken. Acustica Suisse. 1953. Bd. 3. S. 335–343.
  80. Tischner H., Schief A. Fluggeräusch und Schallwahrnehmung bei Aedes aegypti L. (Culicidae). Zool. Anz. 1955. Bd. 18 (Suppl.). S. 453–460.
  81. Vorontsov D. D., Lapshin D. N. Effect of octopamine on the frequency tuning of the auditory system in Culex pipiens pipiens mosquito (Diptera, Culicidae). Neuroscience and Behavioral Physiology. 2024. V. 54. №. 2. 10 p. doi: 10.1007/s11055-024-01600-2
  82. Warren B., Gibson G., Russell I. J. Sex recognition through midflight mating duets in Culex mosquitoes is mediated by acoustic distortion. Current Biology. 2009. V. 9. P. 485–491. doi: 10.1016/j.cub.2009.01.059
  83. Warren B., Lukashkin A. N., Russell I. J. The dynein–tubulin motor powers active oscillations and amplification in the hearing organ of the mosquito. Proceedings of the Royal Society B. 2010. V. 277. P. 1761–1769. doi: 10.1098/rspb.2009.2355
  84. Wishart G., van Sickle G. R., Riordan D. F. Orientation of the males of Aedes aegypti (L.) (Diptera: Culicidae) to sound. Canadian Entomologist. 1962. V. 94. P. 613–626. doi: 10.4039/Ent94613-6
  85. Xu Y.Y.J., Loh Y. M.M., Tai-Ting L., Ohashi T. S., Su M.P., Kamikouchi A. Serotonin modulation in the male Aedes aegypti ear influences hearing. Frontiers in Physiology. 2022. V. 13. P. 931567. doi: 10.3389/fphys.2022.931567
  86. Yack J. E. The structure and function of auditory chordotonal organs in insects. Microscopy Research and Technology. 2004. V. 63. № 6. P. 315–227. doi: 10.1002/jemt.20051
  87. Yorozu S., Wong A., Fischer B. J., Dankert H., Kernan M. J., Kamikouchi A., Ito K., Anderson D. J. Distinct sensory representations of wind and near-field sound in the Drosophila brain. Nature. 2009. V. 458. P. 201–205. doi: 10.1038/nature07843
  88. Ziemer T., Wetjen F., Herbst A. The antenna base plays a crucial role in mosquito courtship behavior. Frontiers in Tropical Diseases. 2022. V. 3. P. 803611. doi: 10.3389/fitd.2022.803611

Supplementary files

Supplementary Files
Action
1. JATS XML
2. Fig. 1. Photographs of antennae and johnston organs: a - male, b - female. Denotations: ant - antenna, do - johnston's organ

Download (338KB)
3. Fig. 2. Schematic diagram of the jejunal organ (according to Hart et al., 2011 with modifications)

Download (192KB)
4. Fig. 3. Activity in the antennal nerve axon: the moment of transition from extracellular to intracellular registration (a, upper oscillogram) against the background of the action of tonal stimulating messages (a, lower oscillogram). The moment of transition corresponds to a negative potential jump. Response to acoustic stimulation registered in the axon of an auditory receptor at intracellular withdrawal (b, upper oscillogram). Stimulus frequency 320 Hz, amplitude 50 dB SPVL (b, lower oscillogram)

Download (115KB)
5. Fig. 4. Schematic of the structure of sensilla of type A of the Johnston organ of the male mosquito (figure according to Boo, Richards, 1975a, with modifications)

Download (235KB)
6. Fig. 5. Positive feedback: a - generalised block diagram of the system covered by the positive feedback loop, the formula of the transfer coefficient of such a system is given in the figure to the right of the block diagram. The main channel of the system with initial transfer coefficient K0 > 1, the signal from its output through the positive feedback block with transfer coefficient B < 1 is summed (+) with the input signal of the system. When the product K0∙B → 1 Cos → ∞ is approached. b - simplified scheme of the mechanotransduction module consisting of one ion channel, an adaptation molecular motor and an elastic element (figure according to Nadrowski et al., 2008 with modifications); positive feedback is provided by the release of calcium ions when the receptor membrane is stretched; c - changes in the shape of the tuning curve of the frequency-selective element under the action of positive feedback: increase in the gain at the optimal frequency, sharpening of the tuning curve of the frequency-selective element at the optimum frequency, sharpening of the tuning curve at the optimum frequency.

Download (205KB)
7. Fig. 6. Spectra of electrical activity in the antennal nerve against the background of feedback action in the acoustic stimulation channel: a - autoexcitation at 154 Hz in the positive feedback mode; b - local suppression of noise when the phase of the feedback signal is inverted (i.e., when negative feedback is applied) at the frequency where autoexcitation was previously observed. Female Aedes excrucians, figure from (Lapshin, Vorontsov, 2013) with modifications

Download (151KB)
8. Fig. 7. Directional diagrams of auditory receptors of the left DO of Culex pipiens pipiens females measured during stimulation in a feedback loop: a - directional diagram of a single receptor consisting of one unipolar lobe (autoexcitation frequency 112 Hz); b - diagrams of two receptors (tuning frequencies 104 Hz and 77 Hz), the activity of which was simultaneously registered in the same area of the antennal nerve. Receptors in this pair reacted in antiphase to acoustic stimulation; in the autoexcitation mode their diagrams are directed in opposite directions. The inset with the mosquito image (back view) shows the zero position and the direction of the positive reference of the angular coordinate j. The relative sensitivity (the inverse of the autoexcitation threshold) is plotted along the radius of the diagrams. Figure from (Lapshin, Vorontsov, 2023) with modifications

Download (294KB)
9. Fig. 8. Histogram of distribution of frequencies of autoexcitation (characteristic frequencies) of auditory receptors of DOs of male Culex pipiens pipiens mosquitoes. Vertical axis - number of registered receptors with characteristic frequencies within one 5 Hz bin. The horizontal bracket with the sign ♀ indicates the range of variability of the basic flight tones of conspecific females. Peaks combining data for receptors that responded in antiphase to the bulk of cells tested are shaded in grey. Figure according to (Lapshin, Vorontsov, 2017) with modifications

Download (74KB)
10. Fig. 9. Family of audiograms of narrowband auditory receptors. Data from electrophysiological experiments with male Aedes communis. Numbers at each curve indicate the corresponding value of goodness of fit at +6 dB from the threshold minimum (Q6). Figure according to (Lapshin, Vorontsov, 2019) with modifications

Download (83KB)
11. Fig. 10. Frequency rearrangement of the auditory system of male Culex pipiens pipiens mosquitoes after injection of octopamine into insect haemolymph. Figure according to (Vorontsov, Lapshin, 2023; Vorontsov, Lapshin, 2024) with modifications

Download (89KB)
12. Fig. 11. Frequency spectrum of electrical activity recorded in the antennal nerve of male Aedes communis in response to sinusoidal stimulation (200 Hz) against the background of flight simulation (frequency 433 Hz). The spectrum contains peaks of the first (200 Hz) and second harmonics (400 Hz), constituting the receptor response directly to the sinusoidal stimulus, 433 Hz and 866 Hz - the first and second harmonics corresponding to the frequency of flight simulation. In addition to these peaks, the spectrum contains Raman harmonics 433 - 200 = 233 (Hz) and 433 + 200 = 633 (Hz), with the 233 Hz difference harmonic being 7 dB greater in amplitude compared to the response to the sinusoidal stimulus (200 Hz harmonic). If the preparation was stimulated with a 633 Hz sinusoidal signal (i.e., in the mirror channel region) against the background of a flight simulation, the 633 - 433 = 200 (Hz) difference combinational harmonic was formed in the region of maximum sensitivity of the auditory receptors. Figure according to (Lapshin, Vorontsov, 2021) with modifications

Download (250KB)
13. Fig. 12. Audiograms constructed from the data of electrophysiological (a) and behavioural experiments (b). The position of the mirror channel (in the 600 Hz region) is indicated by arrows. Flight sound spectra of conspecific females (♀) and males (♂) are superimposed on the graphs. a: results of testing of Culex pipiens pipiens males in stationary conditions and against the background of flight simulation (Lapshin, 2012a; Lapshin, 2012); b: results of swarm stimulation of Aedes communis males in natural conditions (Lapshin, Vorontsov, 2021). In the 350-500 Hz range, no behavioural responses to stimuli with a level of 90 dB SPL or less were recorded

Download (197KB)
14. Fig. 13. Histogram of distribution of frequencies of autoexcitation (characteristic frequencies) of auditory receptors of DOs of female Culex pipiens pipiens mosquitoes. Vertical axis - number of registered receptors with characteristic frequencies within one 5 Hz bin (Lapshin, Vorontsov, 2013)

Download (66KB)
15. Fig. 14. Examples of audiograms of narrowband auditory receptors of female Culex pipiens pipiens. Numbers at each curve indicate the Q6 goodness-of-fit value. Figure according to (Lapshin, Vorontsov, 2023) with modifications

Download (73KB)
16. Fig. 15. Increase of acoustic thresholds in the frequency range below 90 Hz after octopamine injection to female Culex pipiens pipiens mosquitoes (Vorontsov, Lapshin, 2023; Vorontsov, Lapshin, 2024)

Download (94KB)
17. Fig. 16. Distribution of spatial orientation parameters (angle φ) and minimum thresholds (Th, dB) of receptors of the left DO of Culex pipiens pipiens females presented in polar coordinates (Lapshin, Vorontsov, 2023). Threshold values in the ratio ‘lower threshold - larger radius’ (a measure of auditory sensitivity) are plotted along the radius of the diagram. Each pair of diametrically located coloured circles corresponds to the results of testing one receptor (such data representation follows from the symmetrical-bipolar diagram of receptor orientation during the perception of sinusoidal signals). It should be noted that the sensory neurons of the left DO were mostly oriented in quadrants I and III (0-90 and 180-270°); the average value of the angular orientation of the most sensitive receptors in these quadrants is φ = 53° (indicated in the figure by a vector). The histogram of distribution of auditory receptor thresholds in DO females is shown in the inset below

Download (181KB)
18. Fig. 17. Spatial model of the system of directional diagrams of two symmetric groups of receptors of the left (L1) and right (R1) DOs (top view) oriented at an angle φ = 53°. The similarly shaped symmetrical regions of the L2 and R2 diagrams are not shown to simplify the figure (Lapshin and Vorontsov, 2023). The active zone of comparison of signals from the receptors of the right and left DOs is shown in grey in the area of intersection of the diagrams. The width of this zone is determined by the angle 2ξ between the mosquito antennas (inset in the figure on the left): as the angle 2ξ increases, the mutual overlap of the zones in front of the insect also increases. The figure shows the results of the modelling of the overlap zones for two typical values of the angle between the antennas (55 and 73.9°)

Download (69KB)

Copyright (c) 2024 Russian Academy of Sciences