Perceived Trajectories of Cyclic Sound Movement

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

Binaural beats are a phenomenon that occurs during dichotic stimulation due to binaural integration. It takes the form of cyclic movement of the sound image in the listener’s acoustic space when the beat frequency range is below 3 Hz. Our subjects used the inserted earphones to listen to the stimuli that created a sense of sound movement due to changes in the interaural time difference (ITD). We used three types of dichotic stimuli which simulated smooth azimuthal cyclic movement and cyclic abrupt shifts. The ITD changes determined central or lateral positions of movement trajectories. The results confirm that both types of movement created the effect of binaural beats. The range of beats depended on the spatial position of the trajectory: in the frontal sector of acoustic space, the range of beats was greater than on the left or right. The perceived trajectories of smooth motion were shorter than the trajectories of abrupt shift. The influence of spatial position on the perceived trajectory length is interpreted from the standpoint of nonlinear features of lateralization. It is suggested that the effect of ITD pattern on the perceived trajectory length is mediated by temporal integration mechanisms of binaural hearing.

Full Text

Restricted Access

About the authors

L. B Shestopalova

Pavlov Institute of Physiology of the RAS

Author for correspondence.
Email: shestopalovalb@infran.ru
Russian Federation, Saint Petersburg

E. A. Petropavlovskaya

Pavlov Institute of Physiology of the RAS

Email: shestopalovalb@infran.ru
Russian Federation, Saint Petersburg

D. A. Salikova

Pavlov Institute of Physiology of the RAS

Email: shestopalovalb@infran.ru
Russian Federation, Saint Petersburg

P. I. Letyagin

Pavlov Institute of Physiology of the RAS

Email: shestopalovalb@infran.ru
Russian Federation, Saint Petersburg

References

  1. Altman Ya. A. Prostranstvennyi slukh. SPb: Institut fiziologii im. I.P. Pavlova RAN, 2011. 311 s. (In Russian).
  2. Andreeva I. G. Posledeystvie dvizheniya kak universal’noe yavlenie dlya sensornykh sistem, uchastvuyushchikh v orientatsii v prostranstve. II. Slukhovoe posledeystvie. Zhurnal evolyutsionnoy biokhimii i fiziologii. 2015. V. 51(3). P. 145–153 (In Russian).
  3. Blauert I. Prostranstvennyi slukh [Spatial Hearing]. Moscow: Energiya, 1979. 225 p. (In Russian).
  4. Petropavlovskaia E. A, Shestopalova L. B., Vaitulevich S. F. Predictive ability of the auditory system during smooth and abrupt movements of low-intensity sound images. Journal of higher nervous activity. 2023. V. 61(3). Р. 293–305. (In Russian).
  5. Salikova D., Petropavlovskaia E., Shestopalova L. Distortion of human auditory space in a dynamic acoustic environment. Integrative Physiology. 2023. V. 4(2). Р. 198–212. doi: 10.33910/2687-1270-2023-4-2-198-212. (In Russian).
  6. Shestopalova L., Salikova D., Petropavlovskaia Е. Auditory after-effect: stationary adapter changes the perceived trajectories of moving sounds. Journal of higher nervous activity. 2023. V. 73(2). Р. 256–270. (In Russian).
  7. Barlow H. B. Vision: Coding and Efficiency. A theory about the functional role and synaptic mechanism of visual after-effects. New York. Ed. Cambridge University Press, 1990. Р. 363–375.
  8. Akeroyd M. A. A binaural beat constructed from noise. J. Acoust. Soc. Am. 2010. V. 128. Р. 3301–3304. doi: 10.1121/1.3505122
  9. Barlow H. B., Hill R. M. Evidence for a physiological explanation of the waterfall phenomenon and figural after-effects. Nature. 1963. V. 28. Р. 1345–1347. doi: 10.1038/2001345a0
  10. Basu S., Banerjee B. Potential of binaural beats intervention for improving memory and attention: insights from meta-analysis and systematic review. Psychol. Res. 2022. V. 87(4). Р. 951–963. doi: 10.1007/s00426-022-01706-7
  11. Bernstein L. R., Trahiotis C. Binaural beats at high frequencies: listeners’ use of envelope-based interaural temporal and intensity disparities. J. Acoust. Soc. Am. 1996. V. 99. Р. 1670–1679. doi: 10.1121/1.414689
  12. Bernstein L. R., Trahiotis C., Akeroyd M. A., Hartung K. Sensitivity to brief changes of interaural time and interaural intensity. J. Acoust. Soc. Am. V. 2001. V. 109. Р. 1604–1615. doi: 10.1121/1.1354203
  13. Blauert J. On the lag of lateralization caused by interaural time and intensity differences. Audiology. 1972. V. 11(5). Р. 265–270. doi: 10.3109/00206097209072591
  14. Carlile S., Leung J. The perception of auditory motion. Trends Hear. 2016. V. 20. Р. 1–19. doi: 10.1177/2331216516644254
  15. Carlile S., Hyams S., Delaney S. Systematic distortions of auditory space perception following prolonged exposure to broadband noise. J. Acoust. Soc. Am. 2001. V. 110. Р. 416–424. doi: 10.1121/1.1375843
  16. Clifford C. W., Wenderoth P., Spehar B. A functional angle on some after-effects in cortical vision. Proc. Biol. Sci. 2000. V. 267. Р. 1705–1710. doi: 10.1098/rspb.2000.1198
  17. Culling J. F., Summerfield Q. Measurements of the binaural temporal window using a detection task. J. Acoust. Soc. Am. 1998. V. 103. Р. 3540–3553. doi: 10.1121/1.423061
  18. Dingle R. N., Hall S. E., Phillips D. P. The three-channel model of sound localization mechanisms: Interaural level differences. J. Acoust. Soc. Am. 2012. V. 131(5). Р. 4023–4029. doi: 10.1121/1.3701877
  19. Dingle R. N., Hall S. E., Phillips D. P. The three-channel model of sound localization mechanisms: Interaural time differences. J. Acoust. Soc. Am. 2013. V. 133(1). Р. 417–424. doi: 10.1121/1.4768799
  20. Garcia-Argibay M., Santed M. A., Reales J. M. Efficacy of binaural auditory beats in cognition, anxiety, and pain perception: a meta-analysis. Psychol. Res. 2019. V. 83(2). Р. 357–372. doi: 10.1007/s00426-018-1066-8
  21. Getzmann S., Lewald J. The effect of spatial adaptation on auditory motion processing. Hear. Res. 2011. V. 272(1-2). Р. 21–29. doi: 10.1016/j.heares.2010.11.005
  22. Getzmann S., Lewald J. Cortical processing of change in sound location: smooth motion versus discontinuous displacement. Brain Res. 2012. V. 1466. Р. 119–127. doi: 10.1016/j.brainres.2012.05.033
  23. Grantham D. W. Detectability of time-varying interaural correlation in narrow-band noise stimuli. J. Acoust. Soc. Am. 1982. V. 72(4). Р. 1178–1184. doi: 10.1121/1.388326
  24. Grantham D. W. Discrimination of dynamic interaural intensity differences. J. Acoust. Soc. Am. 1984. V. 76(1). Р. 71–76. doi: 10.1121/1.391009
  25. Grantham D. W., Wightman F. L. Detectability of varying interaural temporal differences. J. Acoust. Soc. Am. 1978. V. 63(2). Р. 511–523. doi: 10.1121/1.381751
  26. Gutschalk A., Micheyl C., Oxenham A. J. The pulse-train auditory aftereffect and the perception of rapid amplitude modulations. J. Acoust. Soc. Am. 2008. V. 123(2). Р. 935–945. doi: 10.1121/1.2828057
  27. Kollmeier B., Gilkey R. H. Binaural forward and backward masking: evidence for sluggishness in binaural detection. J. Acoust. Soc. Am. 1990. V. 87. Р. 1709–1719. doi: 10.1121/1.399419
  28. Licklider J. C.R., Webster J. C., Hedlun J. M. On the frequency limits of binaural beats. J. Acoust. Soc. Am. 1950. V. 22. 468–473. doi: 10.1121/1.1906629
  29. Maffei L., Fiorentini A., Bisti S. Neural correlates of perceptual adaptation to gratings. Science. 1973. V. 182. Р. 1036–1038. doi: 10.1126/science.182.4116.1036
  30. McFadden D., Pasanen E. G. Binaural beats at high frequencies. Science. 1975. V. 190(4212). Р. 394–396. doi: 10.1126/science.1179219
  31. Mills A. W. Lateralization of high-frequency tones. JASA. 1960. V. 32. Р. 132–134.
  32. Movshon J. A., Lennie P. Pattern-selective adaptation in visual cortical neurons. Nature. 1979. V. 278. Р. 850–852. doi: 10.1038/278850a0
  33. Perrott D. R., Musicant A. D. Rotating tones and binaural beats. J. Acoust. Soc. Am. 1977. V. 61(5). Р. 1288–1292. doi: 10.1121/1.381430
  34. Perrott D. R., Nelson M. A. Limits for the detection of binaural beats. J. Acoust. Soc. Am. 1969. V. 46(6). Р. 1477–1481. doi: 10.1121/1.1911890
  35. Saberi K. Lateralization of comodulated complex waveforms. J. Acoust. Soc. Am. 1995. V. 98. Р. 3146–3156. doi: 10.1121/1.413804
  36. Salminen N. H., Tiitinen H., May P. J. Auditory spatial processing in the human cortex. The Neuroscientist. 2012. V. 18(6). Р. 602–612. doi: 10.1177/1073858411434209
  37. Shestopalova L., Petropavlovskaia E., Semenova V., Nikitin N. Brain oscillations evoked by sound motion. Brain Res. 2021. V. 1752. P. 147232. doi: 10.1016/j.brainres.2020.147232
  38. Shestopalova L., Petropavlovskaia E., 2012 Vaitulevich S., Vasilenko Yu., Nikitin N., Altman J. Discrimination of auditory motion patterns: mismatch negativity study. Neuropsychologia. V. 50. Р. 2720–2729. doi: 10.1016/j.neuropsychologia.2012.07.043

Supplementary files

Supplementary Files
Action
1. JATS XML
2. Fig. 1. Changes in interaural latency magnitude in binaural sound stimuli modelling smooth and stepped cyclic motion. Top: temporal structure of the stimuli within a single trial. Horizontal line: time (ms), vertical line: interaural delay magnitude (ΔT, µs). Different initial values of ΔT determine different positions of cyclic motion trajectories in subjective auditory space. Bottom: schematic of dichotic stimulation in one cycle of a linear pattern (from 0 µs to 800 µs and back to 0 µs). The head schematics conventionally depict sequential changes in the position of the sound image according to changes in ΔT

Download (233KB)
3. Fig. 2. Perceived angular position of the trajectories of moving stimuli and stationary reference stimuli. Arcs correspond to the trajectories of moving stimuli. Black dots and dashed lines correspond to the position of the reference stimuli. Squares on the arcs mark the position of the stationary region in the stimulus. The diagrams on the left show two pairs of lateral trajectories - left-sided (LC and CL) and right-sided (PC and CP); the diagrams on the right show a pair of central trajectories (PL and LP)

Download (226KB)
4. Fig. 3. Angular distance between stationary repertoires and lengths of cyclic motion trajectories. Horizontal lines are significant differences in pairwise comparisons (p < 0.001). Vertical dashes indicate the standard error of the mean. Vertical lines are angular distances in degrees, horizontal lines are stimulus type

Download (231KB)

Copyright (c) 2024 Russian Academy of Sciences