Nicotinamide-streptozotocin-induced type 2 diabetes mellitus leads to impaired function of the main olfactory system in male WISTAR ra

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

Patients with diabetes mellitus have a decreased olfactory function compared to healthy individuals. Hyposmia is more common in type 2 diabetes (DM2) and is characterized by a decreased ability to recognize odors, impaired olfactory memory, which reduces the quality of life of patients. The mechanisms of hyposmia require studies in animal models, but no such studies have been performed in most commonly used animal models of DM2. The aim of the present study was to investigate olfactory function in the model of nicotinamide-streptozotocin-induced DM2 in rats using widely used behavioral tests of food search performance by smell and olfactory preference. The model of DM2 in male rats showed a decrease in performance and an increase in the time spent on searching for food objects by smell, compared to the control group, which suggests that diabetic animals develop hyposmia. The results of the test for differentiation of the pheromonal mimetic isovaleric acid from bio-indifferent odorants showed no differences between the groups. These results indicate that the development of DM2 in adult rats predominantly affects the functioning of the main olfactory system rather than the functioning of the additional system responsible for the perception of pheromones and pheromonal mimetics.

Full Text

Restricted Access

About the authors

А. V. Gorskaya

Sechenov Institute of Evolutionary Physiology and Biochemistry of the Russian Academy of Sciences

Email: dvasilyev@bk.ru
Russian Federation, 44, M. Torez Ave., Saint Petersburg, 194223

O. V. Chistyakova

Sechenov Institute of Evolutionary Physiology and Biochemistry of the Russian Academy of Sciences

Email: dvasilyev@bk.ru
Russian Federation, 44, M. Torez Ave., Saint Petersburg, 194223

D. S. Vasilyev

Sechenov Institute of Evolutionary Physiology and Biochemistry of the Russian Academy of Sciences

Author for correspondence.
Email: dvasilyev@bk.ru
Russian Federation, 44, M. Torez Ave., Saint Petersburg, 194223

References

  1. Amoore J.E. Specific anosmia and the concept of primary odors. Chemical senses. 1977. V. 2(3). P. 267–281. https://doi.org/10.1093/chemse/2.3.267
  2. Aydin S., Aksoy A., Aydin S., Kalayci M., Yilmaz M., Kuloglu T., Citil C., Catak Z. Today’s and yesterday’s of pathophysiology: biochemistry of metabolic syndrome and animal models. Nutrition. 2014. V. 30(1). P. 1–9. https://doi.or/10.1016/j.nut.2013.05.013
  3. Baum M.J. Contribution of pheromones processed by the main olfactory system to mate recognition in female mammals. Frontiers in neuroanatomy. 2012. V. 6. P. 20. https://doi.org/10.3389/fnana.2012.00020
  4. Beny Y., Kimchi T. Conditioned odor aversion induces social anxiety towards females in wild‐type and TrpC2 knockout male mice. Genes, Brain and Behavior. 2016. V. 15(8). P. 722–732. https://doi.org/10.1111/gbb.12320
  5. Brahmachary R.L. Ecology and chemistry of mammalian pheromones. Endeavour. 1986. V. 10(2). P. 65-68. https://doi.org/10.1016/0160-9327(86)90132-8
  6. Deer J., Koska J., Ozias M., Reaven P. Dietary models of insulin resistance. Metabolism. 2015. V. 64(2). P. 163-171. https://doi.org/10.1016/j.metabol.2014.08.013
  7. Falkowski B., Chudziński M., Jakubowska E., Duda-Sobczak A. Association of olfactory function with the intensity of self-reported physical activity in adults with type 1 diabetes. Pol Arch Intern Med. 2017. V. 127(7–8). P. 476–480. https://doi.org/10.20452/pamw.4073
  8. Fraser E.J., Shah N.M. Complex chemosensory control of female reproductive behaviors. PLoS One. 2014. V. 9(2). P. e90368. https://doi.org/10.1371/journal.pone.0090368
  9. Gascón C., Santaolalla F., Martínez A., Sánchez Del Rey A. Usefulness of the BAST-24 smell and taste test in the study of diabetic patients: a new approach to the determination of renal function. Acta oto-laryngologica. 2013. V. 133(4). P. 400–404. https://doi.org/10.3109/00016489.2012.746471
  10. Ghasemi A., Jeddi S. Streptozotocin as a tool for induction of rat models of diabetes: a practical guide. EXCLI J. 2023. V. 22. P. 274–294. https://doi.org/10.17179/excli2022-5720
  11. Gouveri E., Katotomichelakis M., Gouveris H., Danielides V., Maltezos E., Papanas N. Olfactory dysfunction in type 2 diabetes mellitus: an additional manifestation of microvascular disease? Angiology. 2014. V. 65(10). P. 869—876. https://doi.org/10.1177/0003319714520956
  12. Ishii K.K., Touhara K. Neural circuits regulating sexual behaviors via the olfactory system in mice. Neuroscience Research. 2019. V. 140. P. 59-76. https://doi.org/
  13. Islam S., Choi H. Nongenetic Model of Type 2 Diabetes: A Comparative Study. Pharmacology. 2007. № 79. P. 243–249. https://doi.org/
  14. Jiménez A., Herrera-González A., Organista-Juárez D., Estudillo E., Velasco I., Guerrero-Vargas N. N., Guzmán-Ruíz M. A., Guevara-Guzmán R. Diabetes Induces Permanent Deleterious Effects in the Olfactory Bulb Associated with Increased Tyrosine Hydroxylase Expression and ERK1/2 Phosphorylation. ACS Chem Neurosci
  15. Jiménez A., Organista-Juárez D., Torres-Castro A., Guzmán-Ruíz M.A, Estudillo E., Guevara-Guzmán R. Olfactory dysfunction in diabetic rats is associated with miR-146a overexpression and inflammation. Neurochemical Research. 2020. V. 45(8). P. 1781–1790. https://doi.org/10.1007/s11064-020-03041-y
  16. King A. J.F. The use of animal models in diabetes research. British Journal of Pharmacology. 2012. V. 166(3). P. 877—894. https://doi.org/10.1111/j.1476-5381.2012.01911.x
  17. Le Floch J. P., Le Lièvre G., Labroue M., Paul M., Peynegre R., Perlemuter L. et al. Smell dysfunction and related factors in diabetic patients. Diabetes care. 1993. V. 16.(6). P. 934–937. https://doi.org/10.2337/diacare.16.6.934
  18. Lietzau G., Davidsson W., Östenson C. G., Chiazza F., Nathanson D., Pintana H., Skogsberg J., Klein T., Nyström T., Darsalia V., Patrone C. Type 2 diabetes impairs odour detection, olfactory memory and olfactory neuroplasticity; effects partly reversed by the DPP-4 inhibitor Linagliptin. Acta neuropathologica communications. 2018. V. 6. P. 1—15. https://doi.org/10.1186/s40478—018—0517—1
  19. Michael R. P., Bonsall R. W., Warner P. Human vaginal secretions: volatile fatty acid content. Science. 1974. V. 186(4170). P. 1217-1219. https://doi.org/
  20. Marino F., Salerno N., Scalise M., Salerno L., Torella A., Molinaro C., Chiefalo A., Filardo A., Siracusa C., Panuccio G. Streptozotocin-Induced Type 1 and 2 Diabetes Mellitus Mouse Models Show Different Functional, Cellular and Molecular Patterns of Diabetic Cardiomyopathy. International Journal of Molecular Sciences. 2023. V. 24(2). 1132. https://doi.org/10.3390/ijms24021132
  21. Monereo-Sánchez J., Jansen J. F.A., Köhler S., van Boxtel M. P.J., Backes W. H., Stehouwer C. D.A., Kroon A. A., Kooman J. P., Schalkwijk C. G., Linden D. E.J., Schram M. T. The association of prediabetes and type 2 diabetes with hippocampal subfields volume: The Maastricht study. NeuroImage: Clinical. 2023. V. 39. 103455 https://doi.org/10.1016/j.nicl.2023.103455.
  22. Rabiller G., Ip Z., Zarrabian S., Zhang H., Sato Y., Yazdan-Shahmorad A., Liu J. Type-2 Diabetes Alters Hippocampal Neural Oscillations and Disrupts Synchrony between the Hippocampus and Cortex. Aging and disease. 2024, V. 15(5). P. 2255–2270 https://doi.org/10.14336/AD.2023.1106
  23. Pause B. M. Are androgen steroids acting as pheromones in humans? Physiology & behavior. 2004. V. 83(1). P. 21–29. https://doi.org/
  24. Rivière S, Soubeyre V, Jarriault D, Molinas A, Léger-Charnay E, Desmoulins L, Grebert D, Meunier N, Grosmaitre X. High Fructose Diet inducing diabetes rapidly impacts olfactory epithelium and behavior in mice. Sci Rep. 2016 V. 6. P.34011. https://doi.org/10.1038/srep34011
  25. Shuklina M.N. Osobennosti obonyatel’noj chuvstvitel’nosti cheloveka k zapaham feromonal’nogo tipa [Peculiarities of human olfactory sensitivity to pheromonal-type odors]. Diss. kand. biol. nauk [Diss. for the degree of cand. of biol. sciences]. 2012. 131 p (in Russian).
  26. Su C. Y., Menuz K., Carlson J.R. Olfactory perception: receptors, cells, and circuits. Cell. 2009. V. 139(1). P. 45—59. https://doi.org/10.1016/j.cell.2009.09.015
  27. Várkonyi T., Körei A., Putz Z., Kempler P. Olfactory dysfunction in diabetes: a further step in exploring central manifestations of neuropathy? Angiology. 2014. V. 65(10). P. 857–860. https://doi.org/10.1177/0003319714526971
  28. Weinstock R.S., Wright H.N., Smith D.U. Olfactory dysfunction in diabetes mellitus. Physiology & behavior. 1993. V. 53(1). P. 17–21. https://doi.org/10.1016/0031—9384(93)90005-z
  29. Yahyaeipour H., Ganji F., Sepehri H., Nazari Z. The effect of type 2 diabetes on the olfactory bulb structure of Wistar rats. Nova Biologica Reperta. 2023. V. 10(1). P. 11—16. https://doi.org/10.29252/nbr.10.1.11
  30. Zaghloul H., Pallayova M., Al-Nuaimi O., Hovis K. R., Taheri S. Association between diabetes mellitus and olfactory dysfunction: current perspectives and future directions. Diabetic Medicine. 2018. V. 35(1). P. 41–52. https://doi.org/10.1111/dme.13542

Supplementary files

Supplementary Files
Action
1. JATS XML
2. Fig. 1. a - GTT results for the control group; b - GTT results for the DM2 group. * - statistically significant difference from the value at the "0 min" point in the control or DM2 group, respectively, p < 0.05. Friedman's test. # - statistically significant difference from the value in the control group at the "30 min", "60 min" and "120 min" points, respectively, p < 0.05. Mann-Whitney test. c - postprandial insulin level in control and DM2 groups; d - random glucose level in control and DM2 groups. * - statistically significant difference from the control group, p < 0.05. Mann-Whitney test. Data are presented as: median (25th; 75th percentiles). Control (n = 10) and DM2 (n = 15) groups.

Download (53KB)
3. Fig. 2. Results of the food object search test by odour. a - mean food search performance, in points (0-2) (ordinate axis) for control and SD2 rats; b - mean time of food search by control and SD2 groups (in minutes). Data are presented as: median (25th; 75th percentiles). * - statistically significant difference from the value in the control group, p < 0.05. Mann-Whitney test. Data are presented as: median (25th; 75th percentiles). Groups "Control" (n = 10) and "DM2" (n = 15).

Download (16KB)
4. Fig. 3. Results of the odour preference test for the control and SD2 groups, in percent (ordinate axis). Data are presented as: median (25th; 75th percentiles). * - statistically significant difference from the value in the control group, # - statistically significant difference in odourant preference compared to valerian in the control group, & - statistically significant difference in odourant preference compared to valerian in the SD2 group p < 0.05. Mann-Whitney test, with Bonferoni correction. Control (n = 10) and SD2 (n = 15) groups.

Download (23KB)

Copyright (c) 2025 Russian Academy of Sciences