Neutrophils: importance in the systemic lupus erythematosus pathogenesis
- Authors: Mozgovaya E.E.1, Bedina S.A.1,2, Trofimenko A.S.1, Spitsina S.S.1,2, Mamus M.A.1, Zborovskaya I.A.1
-
Affiliations:
- Federal State Budgetary Institution “Research Institute of Clinical and Experimental Rheumatology named after A.B. Zborovsky”
- Volgograd State Medical University
- Issue: Vol 56, No 1 (2025)
- Pages: 22-36
- Section: Articles
- URL: https://rjonco.com/0301-1798/article/view/684851
- DOI: https://doi.org/10.31857/S0301179825010024
- EDN: https://elibrary.ru/VFURDI
- ID: 684851
Cite item
Abstract
The review summarizes the modern scientific data concerning the neutrophils participation in the development of systemic lupus erythematosus (SLE) pathological processes. Acting as a link between innate and adaptive immunity, they play a fundamental role in the SLE immunopathogenesis. The review considers the phenotypic diversity and functions of these granulocytes. The features of changes in the qualitative and quantitative composition of their population in SLE are shown. The disease is characterized by impaired autophagy, phagocytosis, production of reactive oxygen species and neutrophil clearance. The process of formation of neutrophil extracellular traps (NETs) is of great importance. Тhe mathematical model aimed at studying its contribution to the process of SLE initiation is proposed. Changes in the functional properties of neutrophils, the NETs formation contribute to the development of thrombophilic conditions, endothelial dysfunction, damage to the vessels, kidneys, lungs, and skin. Therapeutic strategies that allow influencing the associated with the functioning of neutrophils processes have potential in terms of increasing the disease treatment effectiveness.
About the authors
E. E. Mozgovaya
Federal State Budgetary Institution “Research Institute of Clinical and Experimental Rheumatology named after A.B. Zborovsky”
Author for correspondence.
Email: nauka@pebma.org
Russian Federation, Volgograd, 400138
S. A. Bedina
Federal State Budgetary Institution “Research Institute of Clinical and Experimental Rheumatology named after A.B. Zborovsky”; Volgograd State Medical University
Email: nauka@pebma.org
Russian Federation, Volgograd, 400138; Volgograd, 400131
A. S. Trofimenko
Federal State Budgetary Institution “Research Institute of Clinical and Experimental Rheumatology named after A.B. Zborovsky”
Email: nauka@pebma.org
Russian Federation, Volgograd, 400138
S. S. Spitsina
Federal State Budgetary Institution “Research Institute of Clinical and Experimental Rheumatology named after A.B. Zborovsky”; Volgograd State Medical University
Email: nauka@pebma.org
Russian Federation, Volgograd, 400138; Volgograd, 400131
M. A. Mamus
Federal State Budgetary Institution “Research Institute of Clinical and Experimental Rheumatology named after A.B. Zborovsky”
Email: nauka@pebma.org
Russian Federation, Volgograd, 400138
I. A. Zborovskaya
Federal State Budgetary Institution “Research Institute of Clinical and Experimental Rheumatology named after A.B. Zborovsky”
Email: nauka@pebma.org
Russian Federation, Volgograd, 400138
References
- Беляева А.С., Ванько Л.В., Матвеева Н.К., Кречетова Л.В. Нейтрофильные гранулоциты как регуляторы иммунитета // Иммунология. 2016. Т. 37. № 2. С. 129–133. https://doi.org/10.18821/0206-4952-2016-37-2-129-133
- Богданов А.Н., Тыренко В.В., Щербак С.Г. Изменения системы крови при ревматических заболеваниях // Вестник Российской военно-медицинской академии. 2013. Т. 3. № 42. С. 173–179.
- Долгушин И.И. Нейтрофильные гранулоциты: новые лица старых знакомых // Бюллетень сибирской медицины. 2019. Т. 18. № 1. С. 30–37. https://doi.org/10.20538/1682-0363-2019-1-30–37
- Насонов Е.Л., Авдеева А.С., Решетняк Т.М., Алексанкин А.П., Рубцов Ю.П. Роль нетоза в патогенезе иммуновоспалительных ревматических заболеваний // Научно-практическая ревматология. 2023. Т. 61. № 5. С. 513–530. https://doi.org/10.47360/1995-4484-2023-513-530
- Насонов Е.Л., Решетняк Т.М., Соловьев С.К., Попкова Т.В. Системная красная волчанка и антифосфолипидный синдром: вчера, сегодня, завтра // Терапевтический архив. 2023. Т. 95. № 5. С. 365–374. https://doi.org/10.26442/00403660.2023.05.202246
- Решетняк Т.М., Нурбаева К.С., Пташник И.В. и др. Нетоз при волчаночном нефрите // Терапевтический архив. 2024. Т. 96. № 5. С. 453–458. https://doi.org/10.26442/00403660.2024.05.202699
- Смирнова Е.В., Краснова Т.Н., Проскурнина Е.В., Мухин Н.А. Роль дисфункции нейтрофилов в патогенезе системной красной волчанки // Терапевтический архив. 2017. Т. 89. № 12. C. 110–113. https://doi.org/10.17116/terarkh20178912110-113
- Смирнова Е.В., Проскурнина Е.В., Краснова Т.Н. Особенности функционального статуса нейтрофилов у больных волчаночным нефритом // Здоровье и образование в XXI в. 2017. Т. 19. № 12. http://dx.doi.org/10.26787/nydha-2226-7425-2017-19-12-277-280
- Тасибекова Г.Т., Калиев Э.А., Кожахметова А.Н. Особенности изменения гемотологических показателей крови при системной красной волчанке. Обзор литературы // Ғылым және Денсаулық сақтау. 2020. Т. 22. № 5. С. 57–67. https://doi.org/10.34689/SH.2020.22.5.005
- Федорова Е.В., Матвеева Н.К., Ванько Л.В. и др. Клинико-иммунологическая характеристика беременных женщин с системной красной волчанкой // Акушерство и гинекология. 2013. № 12. С. 46–51.
- Хаитов Р.М. Иммунология: структура и функции иммунной системы. ГЭОТАР-Медиа. М. 2019. 328 с.
- Accapezzato D., Caccavale R., Paroli M.P. et al. Advances in the Pathogenesis and Treatment of Systemic Lupus Erythematosus // Int. J. Mol. Sci. 2023. V. 24. № 7. P. 6578. https://doi.org/10.3390/ijms24076578
- Ambler W.G., Kaplan M.J. Vascular damage in systemic lupus erythematosus // Nat. Rev. Nephrol. 2024. V. 20. P. 251–265. https://doi.org/10.1038/s41581-023-00797-8
- Antiochos B., Trejo-Zambrano D., Fenaroli P. et al. The DNA sensors Aim2 and Ifi16 are SLE Autoantigens that bind neutrophil extracellular traps // Elife. 2022. V. 1. e72103. https://doi.org/10.7554/eLife.72103
- Apel F., Zychlinsky A., Kenny E.F. The role of neutrophil extracellular traps in rheumatic diseases // Nat. Rev. Rheumatol. 2018. V. 14. P. 467–475. https://doi.org/10.1038/s41584-018-0039-z.
- Banchereau R., Hong S., Cantarel B. et al. Personalized immunomonitoring uncovers molecular networks that stratify lupus patients // Cell. 2016. V. 165. № 3. P. 551–565. https://doi.org/10.1016/j.cell.2016.03.008
- Barrera-Vargas A., Gómez-Martín D., Carmona-Rivera C. et al. Differential ubiquitination in NETs regulates macrophage responses in systemic lupus erythematosus // Ann. Rheum. Dis. 2018. V. 77. № 6. P. 944–950. https://doi.org 10.1136/annrheumdis-2017-212617.
- Bashant K.R., Aponte A.M., Randazzo D. et al. Proteomic, biomechanical and functional analyses define neutrophil heterogeneity in systemic lupus erythematosus // Ann. Rheum. Dis. 2021. V. 80. № 2. P. 209–218. https://doi.org/ 10.1136/annrheumdis-2020-218338
- Blanco L.P., Wang X., Carlucci P.M. et al. RNA Externalized by Neutrophil Extracellular Traps Promotes Inflammatory Pathways in Endothelial Cells // Arthritis Rheumatol. 2021. V. 73. № 12. P. 2282–2292. https://doi.org/10.1002/art.41796
- Boeltz S., Amini P., Anders H.J. et al. To NET or not to NET: current opinions and state of the science regarding the formation of neutrophil extracellular traps // Cel.l Death. Differ. 2019. V. 26. P. 395–408. https://doi.org/10.1038/s41418-018-0261-x
- Brostjan C., Oehler R. The role of neutrophil death in chronic inflammation and cancer // Cell. Death. Discov. 2020. V. 6. № 26. https://doi.org/10.1038/s41420-020-0255-6
- Budu-Grajdeanu P., Schugart R.C., Friedman A. et al. Mathematical framework for human SLE nephritis: disease dynamics and urine biomarkers // Theor Biol. Med. Model. 2010. V. 7. P. 14. https://doi.org/10.1186/1742-4682-7-14
- Capsoni F., Sarzi-Puttini P., Zanella A. Primary and secondary autoimmune neutropenia // Arthritis. Res. Ther. 2005. V. 7. № 5. P. 208–214. https://doi.org/10.1186/ar1803
- Chang H.H., Dwivedi N., Nicholas A.P., Ho I.C. The W620 Polymorphism in PTPN22 Disrupts Its Interaction With Peptidylarginine Deiminase Type 4 and Enhances Citrullination and NETosis // Arthritis Rheumatol. 2015. V. 67. № 9. P. 2323–2334. https://doi.org/10.1002/art.39215
- Chen Y.M., Tang K.T., Liu H.J. et al. tRF-His-GTG-1 enhances NETs formation and interferon-α production in lupus by extracellular vesicle // Cell. Commun Signal. 2024. V. 22. № 1. P. 354. https://doi.org/10.1186/s12964-024-01730-7
- Dąbrowska D., Jabłońska E., Iwaniuk A., Garley M. Many Ways – One Destination: Different Types of Neutrophils Death // Int. Rev. Immunol. 2019. V. 38. № 1. P. 18–32. https://doi.org/10.1080/08830185.2018.1540616
- De Bont C.M., Boelens W.C., Pruijn G.J.M. NETosis, complement, and coagulation: A triangular relationship // Cell. Mol. Immunol. 2019. V. 16. P. 19–27. https://doi.org/10.1038/s41423-018-0024-0
- De Bont C., Pruijn G.J.M. Citrulline is not a major determinant of autoantibody reactivity to neutrophil extracellular traps // Philos. Trans. R Soc. Lond B Biol Sci. 2023. V. 378. № 1890. P. 20220249. https://doi.org/10.1098/rstb.2022.0249
- Delabio Auer E., Bumiller-Bini Hoch V., Borges da Silva E. et al. Association of neutrophil extracellular trap levels with Raynaud’s phenomenon, glomerulonephritis and disease index score in SLE patients from Brazil // Immunobiology. 2024. V. 229. № 3. P. 152803. https://doi.org/10.1016/j.imbio.2024.152803
- Dömer D., Walther T., Möller S. et al. Neutrophil extracellular traps activate proinflammatory functions of human neutrophils // Frontiers in Immunoogy. 2021. V. 12. P. 636954. https://doi.org/10.3389/fimmu.2021.636954.
- Euler M., Hoffmann M.H. The double-edged role of neutrophil extracellular traps in inflammation // Biochemical Society Transactions. 2019. V. 47. № 6. P. 1921–1930. https://doi.org/10.1042/BST20190629
- Fayyaz A., Igoe A., Kurien B.T. et al. Haematological manifestations of lupus // Lupus. Sci. Med. 2015. V. 3. № 2(1). e000078. https://doi.org/ 10.1136/lupus-2014-000078
- Foret T., Dufrost V., du Mont L.S. et al. A new pro-thrombotic mechanism of neutrophil extracellular traps in antiphospholipid syndrome: Impact on activated protein C resistance // Rheumatology. 2022. V. 61. P. 2993–2998. https://doi.org/10.1093/rheumatology/keab853
- Fousert E., Toes R., Desai J. Neutrophil extracellular traps (NETs) take the central stage in driving autoimmune responses // Cells. 2020. V. 9. P. 915. https://doi.org/10.3390/cells9040915
- Fresneda A.M., McLaren Z., Wright H.L. Neutrophils in the pathogenesis of rheumatoid arthritis and systemic lupus erythematosus: same foe different M.O. // Frontiers in Imunoogy. 2021. V. 12. P. 649693. https://doi.org/10.3389/fimmu.2021.649693
- Gao X., He J., Sun X., Li F. Dynamically modeling the effective range of IL-2 dosage in the treatment of systemic lupus erythematosus // iScience. 2022. V. 25. № 9. P. 104911. https://doi.org/10.1016/j.isci.2022.104911
- Garcia-Romo G.S., Caielli S., Vega B. et al. Netting neutrophils are major inducers of type I IFN production in pediatric systemic lupus erythematosus // Sci. Transl. Med. 2011. V. 3. № 73. 73ra20. https://doi.org/10.1126/scitranslmed.3001201
- Gestermann N., Di Domizio J., Lande R. et al. Netting neutrophils activate autoreactive B cells in lupus // J. Immunol. 2018. V. 200. № 10. P. 3364–3371. https://doi.org/10.4049/jimmunol.1700778
- Goel R.R., Nakabo S., Dizon B.L.P. et al. Lupus-like autoimmunity and increased interferon response in patients with STAT3-deficient hyper-IgE syndrome // J. Allergy Clin. Immunol. 2021. V. 147. P. 746–749. https://doi.org/10.1016/j.jaci.2020.07.024.
- Grecian R., Whyte M.K. B., Walmsley S.R. The role of neutrophils in cancer // Br. Med. Bull. 2018. V. 128. № 1. P. 5–14. https://doi.org/10.1093/bmb/ldy029
- Haidar Ahmad A., Melbouci D., Decker P. Polymorphonuclear neutrophils in rheumatoid arthritis and systemic lupus erythematosus: more complicated than anticipated // Immuno. 2022. V. 2. P. 85–103. https://doi.org/10.3390/immuno2010007
- Hao W., Rovin B.H., Friedman A. Mathematical model of renal interstitial fibrosis // Proc. Natl. Acad. Sci. USA. 2014. V. 111. № 39. P. 14193–14198. https://doi.org/10.1073/pnas.1413970111
- Henning S., Reimers T., Abdulahad W. et al. Low density granulocytes and neutrophil extracellular trap formation are increased in incomplete systemic lupus erythematosus // Rheumatology (Oxford), keae300. 2024. https://doi.org/10.1093/rheumatology/keae300.
- Herrero-Cervera A., Soehnlein O., Kenne E. Neutrophils in chronic inflammatory diseases // Cell. Mol. Immunol. 2022. V. 19. № 2. P. 177–191. https://doi.org/10.1038/s41423-021-00832-3
- Hom G., Graham R.R., Modrek B. et al. Association of systemic lupus erythematosus with C8orf13-BLK and ITGAM-ITGAX // N. Engl. J. Med. 2008. V. 358. P. 900–909. https://doi.org/10.1056/NEJMoa0707865
- Huang J., Mao T., Zhang J. et al. Decreased DNase1L3 secretion and associated antibodies induce impaired degradation of NETs in patients with sporadic SLE // Xi Bao Yu Fen Zi Mian Yi Xue Za Zhi. 2024. V. 40. № 1. P. 43–50.
- Jacob C.O., Eisenstein M., Dinauer M.C. et al. Lupus-associated causal mutation in neutrophil cytosolic factor 2 (NCF2) brings unique insights to the structure and function of NADPH oxidase // Proc. Natl. Acad. Sci. USA. 2012. V. 109. P. E59–E67. https://doi.org/ 10.1073/pnas.1113251108
- Java A., Apicelli A.J., Liszewski M.K. et al. The complement system in COVID-19: friend and foe? // JCI. Insight. 2020. V. 6. № 5(15). e140711. https://doi.org/10.1172/jci.insight.140711
- Java A., Kim A.H.J. The Role of Complement in Autoimmune Disease-Associated Thrombotic Microangiopathy and the Potential for Therapeutics // The Journal of Rheumatology. 2023. V. 50. № 6. P. 730–740. https://doi.org/10.3899/jrheum.220752
- Jog N.R., Wagner C.A., Aberle T. et al. Neutrophils isolated from systemic lupus erythematosus patients exhibit a distinct functional phenotype // Front Immunol. 2024. V. 15. 1339250. https://doi.org/ 10.3389/fimmu.2024.1339250
- Kahlenberg J.M., Carmona-Rivera C., Smith C.K., Kaplan M.J. Neutrophil extracellular trap-associated protein activation of the NLRP3 inflammasome is enhanced in lupus macrophages // J. Immunol. 2013. V. 190. P. 1217–1226. https://doi.org/10.4049/jimmunol.1202388
- Kubota T. An Emerging Role for Anti-DNA Antibodies in Systemic Lupus Erythematosus // Int J. Mol. Sci. 2023. V. 24. № 22. P. 16499. https://doi.org/10.3390/ijms242216499
- Lambers W.M., Westra J., Bootsma H., de Leeuw K. From incomplete to complete systemic lupus erythematosus: a review of the predictive serological immune markers // Semin. Arthritis. Rheum. 2021. V. 51. P. 43–48. https://doi.org/10.1016/j.semarthrit.2020.11.006
- Lande R., Ganguly D., Facchinetti V. et al. Neutrophils activate plasmacytoid dendritic cells by releasing self-DNA-peptide complexes in systemic lupus erythematosus // Sci. Transl. Med. 2011. V. 3. 73ra19. https://doi.org/10.1126/scitranslmed.3001180
- Li D., Matta B., Song S. et al. IRF5 genetic risk variants drive myeloid-specific IRF5 hyperactivation and presymptomatic SLE // JCI Insight. 2020. V. 5. e124020. https://doi.org/10.1172/jci.insight.124020
- Li H.Y., Huang L.F., Huang X.R. et al. Endoplasmic Reticulum Stress in Systemic Lupus Erythematosus and Lupus Nephritis: Potential Therapeutic Target // J. Immunol. Res. 2023. P. 7625817. https://doi.org/10.1155/2023/7625817
- Li M., Weng L., Yu D. et al. Increased formation of neutrophil extracellular traps induced by autophagy and identification of autophagy-related biomarkers in systemic lupus erythematosus // Exp. Dermatol. 2024. V. 33. № 1. e14881. https://doi.org/10.1111/exd.14881
- Lin H., Liu J., Li N. et al. NETosis promotes chronic inflammation and fibrosis in systemic lupus erythematosus and COVID-19 // Clin. Immunol. 2023. V. 254. P. 109687. https://doi.org/10.1016/j.clim.2023.109687
- Liu Y., Kaplan M.J. Neutrophils in the Pathogenesis of Rheumatic Diseases: Fueling the Fire // Clin. Rev. Allergy. Immunol. 2021. V. 60. № 1. P. 1–16. https://doi.org/10.1007/s12016-020-08816-3
- Ma S., Jiang W., Zhang X., Liu W. Insights into the pathogenic role of neutrophils in systemic lupus erythematosus // Cur.r Opin. Rheumatol. 2023. V. 35. № 2. P. 82–88. https://doi.org/10.1097/ BOR.0000000000000912
- Manz M.G., Boettcher S. Emergency granulopoiesis // Nat. Rev. Immunol. 2014. V. 14. P. 302–314. https://doi.org/10.1038/nri3660
- Melbouci D., Ahmad A.H., Decker P. Neutrophil extracellular traps (NET): not only antimicrobial but also modulators of innate and adaptive immunities in inflammatory autoimmune diseases // RMD Open. 2023. V. 9. № 3. e003104. https://doi.org/10.1136/rmdopen-2023-003104
- Mistry P., Nakabo S., O’Neil L. et al. Transcriptomic, epigenetic, and functional analyses implicate neutrophil diversity in the pathogenesis of systemic lupus erythematosus // Proc. Natl. Acad. Sci. U S A. 2019. V. 116. № 50. P. 25222–25228. https://doi.org/ 10.1073/pnas.1908576116
- Moadab F., Sohrabi S., Wang X. et al. Subcellular location of L1 retrotransposon-encoded ORF1p, reverse transcription products, and DNA sensors in lupus granulocytes // Mob. DNA. 2024. V. 15. № 1. P. 14. https://doi.org/10.1186/s13100-024-00324-x
- Odqvist L., Jevnikar Z., Riise R. et al. Genetic variations in A20 DUB domain provide a genetic link to citrullination and neutrophil extracellular traps in systemic lupus erythematosus // Ann. Rheum. Dis. 2019. V. 78. P. 1363–1370. https://doi.org/10.1136/annrheumdis-2019-215434
- Ogawa H., Yokota S., Hosoi Y. et al. Methylprednisolone pulse-enhanced neutrophil extracellular trap formation in mice with imiquimod-induced lupus-like disease, resulting in ischaemia of the femoral head cartilage // Lupus. Sci. Med. 2023. V. 10. № 2. e001042. https://doi.org/10.1136/lupus-2023-00104
- Olsson L.M., Johansson A.C., Gullstrand B. et al. A single nucleotide polymorphism in the NCF1 gene leading to reduced oxidative burst is associated with systemic lupus erythematosus // Ann. Rheum. Dis. 2017. V. 76. P. 1607–1613. https://doi.org/10.1136/annrheumdis-2017-211287
- Palanichamy A., Bauer J.W., Yalavarthi S. et al. Neutrophil mediated IFN activation in the bone marrow alters B cell development in human and murine SLE // J. Immunol. 2014. V. 192. № 3. P. 906–918. https://doi.org/10.4049/jimmunol.1302112
- Patiño-Trives A.M., Pérez-Sánchez C., Pérez-Sánchez L. et al. Anti-dsDNA Antibodies Increase the Cardiovascular Risk in Systemic Lupus Erythematosus Promoting a Distinctive Immune and Vascular Activation // Arteriosclerosis, Thrombosis, and Vascular Biology. 2021. V. 41. № 9. P. 2417–2430. https://doi.org/10.1161/ATVBAHA.121.315928
- Pieterse E., Rother N., Yanginlar C. et al. Cleaved N-terminal histone tails distinguish between NADPH oxidase (NOX)-dependent and NOX-independent pathways of neutrophil extracellular trap formation // Ann Rheum Dis. 2018. V. 77. № 12. P. 1790–1798. https://doi.org/10.1136/annrheumdis-2018-213223
- Pillay J., den Braber I., Vrisekoop N. et al. In vivo labeling with 2H2O reveals a human neutrophil lifespan of 5.4 days // Blood. 2010. V. 116. P. 625–627. https://doi.org/10.1182/blood-2010-01-259028
- Poli C., Augusto J.F., Dauvé J. et al. IL-26 confers proinflammatory properties to extracellular DNA // J Immunol. 2017. V. 198. № 9. P. 3650–3661.
- Psarras A., Wittmann M., Vital E.M. Emerging concepts of type I interferons in SLE pathogenesis and therapy // Nat. Rev. Rheumatol. 2022. V. 18. № 10. P. 575–590. https://doi.org/10.1038/s41584-022-00826-z
- Puga I., Cols M., Barra C.M. et al. B cell-helper neutrophils stimulate the diversification and production of immunoglobulin in the marginal zone of the spleen // Nat. Immunol. 2012. V. 13. P. 170–80. https://doi.org/10.1038/ni.2194
- Rahman S., Sagar D., Hanna R.N. et al. Low-density granulocytes activate T cells and demonstrate a non-suppressive role in systemic lupus erythematosus // Ann. Rheum. Dis. 2019. V. 78. P. 957–966. https://doi.org/10.1136/annrheumdis-2018-214620
- Rosales C. Neutrophils at the crossroads of innate and adaptive immunity // J. Leukoc Biol. 2020. V. 108. № 1. P. 377–396. https://doi.org/10.1002/ JLB.4MIR0220-574RR
- Rysenga C.E., May-Zhang L., Zahavi M. et al. Taxifolin inhibits NETosis through activation of Nrf2 and provides protective effects in models of lupus and antiphospholipid syndrome // Rheumatology (Oxford). 2024. V. 63. № 7. P. 2006–2015. https://doi.org/10.1093/rheumatology/kead547
- Safi R., Al-Hage J., Abbas O. et al. Investigating the presence of neutrophil extracellular traps in cutaneous lesions of different subtypes of lupus erythematosus // Exp. Dermatol. 2019. V. 28. № 11. P. 1348–1352. https://doi.org/10.1111/exd.14040
- Santiworakul C., Saisorn W., Siripen N. et al. Interleukin-8 and neutrophil extracellular traps in children with lupus nephritis and vitamin C deficiency // Pediatr Nephrol. 2024. V. 39. № 4. P. 1135–1142. https://doi.org/10.1007/s00467-023-06189-1
- Smith C.K., Kaplan M.J. The role of neutrophils in the pathogenesis of systemic lupus erythematosus // Current Opinion in Rheumatology. 2015. V. 27. № 5. P. 448–453. https://doi.org/10.1097/BOR.0000000000000197
- Starkebaum G., Price T.H., Lee M.Y. et al. Autoimmune neutropenia in systemic lupus erythematosus // Arthritis Rheum. 1978. V. 21. P. 504–512. https://doi.org/10.1002/art.1780210503
- Stojkov D., Gigon L., Peng S. et al. Physiological and pathophysiological roles of metabolic pathways for NET formation and other neutrophil functions // Frontiers in Immunology. 2022. V. 13. P. 826515. https://doi.org/10.3389/fimmu.2022.826515.826515
- Sukhikh G.T., Safronova V.G., Vanko L.V. et al. Phagocyte activity in the peripheral blood of pregnant women with systemic lupus erythematosus and in the cord blood of their newborns // Int. J. Rheum Dis. 2017. V. 20. № 5. P. 597–608. https://doi.org/10.1111/1756-185X.13085
- Sule G., Abuaita B.H., Steffes P.A. et al. Endoplasmic reticulum stress sensor IRE1α propels neutrophil hyperactivity in lupus // The Journal of Clinical Investigation. 2021. V. 131. № 7. P. 2021. e137866. https://doi.org/10.1172/JCI137866
- Suvandjieva V., Tsacheva I., Santos M. et al. Modelling the Impact of NETosis During the Initial Stage of Systemic Lupus Erythematosus // Bull Math Biol. 2024. V. 86. № 6. P. 66. https://doi.org/10.1007/s11538-024-01291-3
- Szekanecz Z., McInnes I.B., Schett G. et al. Autoinflammation and autoimmunity across rheumatic and musculoskeletal diseases // Nat. Rev. Rheumatol. 2021. V. 17. № 10. P. 585–595. https://doi.org/10.1038/s41584-021-00652-9
- Thimmappa P.Y., Nair A.S., D’silva S. et al. Neutrophils display distinct post-translational modifications in response to varied pathological stimuli // International Immunopharmacology. 2024. V. 132. P. 111950. https://doi.org/10.1016/j.intimp.2024.111950
- Trofimenko A.S., Mozgovaya E.E., Bedina S.A., Spasov A.A. Ambiguities in neutrophil extracellular traps. Ongoing concepts and potential biomarkers for rheumatoid arthritis: A narrative review // Current Rheumatology Reviews. 2021. V. 17. № 3. P. 283–293. https://doi.org/10.2174/1573397116666201221113100
- Van Damme K.F.A., Hertens P., Martens A. et al. Protein citrullination and NET formation do not contribute to the pathology of A20/TNFAIP3 mutant mice // Sci Rep. 2023. V. 13. № 1. P. 17992. https://doi.org/10.1038/s41598-023-45324-8
- Van der Linden M., van den Hoogen L.L., Westerlaken G.H.A. et al. Neutrophil extracellular trap release is associated with antinuclear antibodies in systemic lupus erythematosus and anti-phospholipid syndrome // Rheumatology (Oxford). 2018. V. 57. № 7. P. 1228–1234. https://doi.org/10.1093/rheumatology/key067.
- Wang T., Rathee A., Pemberton P.A., Lood C. Exogenous serpin B1 restricts immune complex-mediated NET formation via inhibition of a chymotrypsin-like protease and enhances microbial phagocytosis // J. Biol. Chem. 2024. V. 300. № 8. P. 107533. https://doi.org/10.1016/j.jbc.2024.107533
- Wigerblad G., Cao Q., Brooks S. et al. Single-cell analysis reveals the range of transcriptional States of circulating human neutrophils // J. Immunol. 2022. V. 209. P. 772–782. https://doi.org/10.4049/jimmunol.2200154
- Wigerblad G., Kaplan M.J. Neutrophil extracellular traps in systemic autoimmune and autoinflammatory diseases // Nat. Rev. Immunol. 2023. V. 23. P. 274–288. https://doi.org/10.1038/s41577-022-00787-0
- Yamamoto T. Role of neutrophils in cutaneous lupus erythematosus // J. Dermatol. 2024. V. 51. № 2. P. 180—184. https://doi.org/10.1111/1346-8138.17036
- Yamasaki K., Niho Y., Yanase T. Granulopoiesis in systemic lupus erythematosus // Arthritis Rheum. 1983. V. 26. № 516–521. https://doi.org/10.1002/art.1780260410
- Yazdani A., Bahrami F., Pourgholaminejad A. et al. A biological and a mathematical model of SLE treated by mesenchymal stem cells covering all the stages of the disease // Theor Biosci. 2023. V. 142. № 2. P. 167–179 https://doi.org/10.1007/s12064-023-00390-4
- Zuo Y., Navaz S., Tsodikov A. et al. Anti-neutrophil extracellular trap antibodies in antiphospholipid antibody-positive patients: Results from the Antiphospholipid Syndrome Alliance for Clinical Trials and International Networking clinical database and repository // Arthritis Rheumatol. 2023. V. 75. P. 1407–1414. https://doi.org/10.1002/art.42489
Supplementary files
