Влияние микропластика на пресноводных двустворчатых моллюсков (обзор)

Обложка

Цитировать

Полный текст

Открытый доступ Открытый доступ
Доступ закрыт Доступ предоставлен
Доступ закрыт Только для подписчиков

Аннотация

Антропогенное загрязнение окружающей водной среды микропластиком является одной из наиболее актуальных, но наименее изученных проблем современной экотоксикологии. В обзоре на основе последних литературных данных проанализированы исследования в области поглощения, биоаккумуляции и биологических эффектов воздействия микропластика у пресноводных двустворчатых моллюсков (Bivalvia). К настоящему времени проведено 22 исследования на представителях трех семейств: Cyrenidae (45), Unionidae (25) и Dreissenidae (30%). Эти исследования представлены полевыми наблюдениями (43.5), натурными (8.7) и лабораторными (47.8%) экспериментами. Показано, что пресноводные двустворчатые моллюски как активные фильтраторы способны поглощать из воды и донных отложений и аккумулировать в мягких тканях (жабрах, гепатопанкреасе) частицы микропластика, воспринимая их в качестве пищевых объектов. Биоаккумуляция микропластика в моллюсках приводит к функциональным и структурным нарушениям в организме. Совместное действие микропластика и других загрязняющих веществ (кадмия, полихлорированных бифенилов, фармакологических препаратов) может вызывать как синергические, так и антагонистические эффекты в биологических ответах моллюсков. Исходя из проведенных исследований, предлагается использовать двустворчатых моллюсков в качестве биоиндикаторов загрязнения пресных вод микропластиком.

Полный текст

Доступ закрыт

Об авторах

Г. М. Чуйко

Институт биологии внутренних вод им. И.Д. Папанина Российской академии наук

Автор, ответственный за переписку.
Email: gchuiko@ibiw.ru
Россия, пос. Борок, Некоузский р-н, Ярославская обл.

Н. В. Холмогорова

Удмуртский государственный университет; Национальный исследовательский Томский государственный университет

Email: gchuiko@ibiw.ru
Россия, Ижевск, Удмуртская Республика; Томск

Г. П. Жариков

Ярославский государственный медицинский университет

Email: gchuiko@ibiw.ru
Россия, Ярославль

Список литературы

  1. Зобков М.Б., Есюкова Е.Е. 2018. Микропластик в морской среде: обзор методов отбора, подготовки и анализа проб воды, донных отложений и береговых наносов // Океанология. Т. 58. № 1. С. 149. https://doi.org/10.7868/S0030157418010148
  2. Казимирук В.Д. 2022. Почему в зарослях макрофитов много микропластика: действующие механизмы // Матер. I Всерос. конф. с междунар. участием “MicroPlasticsEnvironment – 2022” (МРЕ-2022), 02–06 августа 2022 г., п. Шира, Хакасия. Томск: Изд-во Томск. гос. ун-та. С. 43.
  3. Чубаренко И.П., Есюкова Е.Е., Хатмуллина Л.И. и др. 2021. Микропластик в морской среде. М.: Науч. мир.
  4. Atamanalp M., Kokturk M., Gündüz F. et al. 2023. The Use of zebra mussel (Dreissena polymorpha) as a sentinel species for the microplastic pollution of freshwater: the case of Beyhan Dam Lake, Turkey. Sustainability 15, 1422. https://doi.org/10.3390/su15021422
  5. Atici A.A. 2022. The first evidence of microplastic uptake in natural freshwater mussel, Unio stevenianus from Karasu River, Turkey // Biomarkers. V. 27. Issue 2. P. 118. https://doi.org/10.1080/1354750X.2021.2020335
  6. Baldwin A.K., Spanjer A.R., Rosen M.R. et al. 2020. Microplastics in Lake Mead National Recreation Area, USA: Occurrence and biological uptake // PLoS ONE. V. 15(5). e0228896. https://doi.org/10.1371/journal.pone.0228896
  7. Bellasi A., Binda G., Pozzi A. et al. 2020. Microplastic contamination in freshwater environments: A review, focusing on interactions with sediments and benthic organisms // Environments. V. 7. № 4. https://doi.org/10.3390/environments7040030
  8. Berglund E., Fogelberg V., Nilsson P.A. et al. 2019. Microplastics in a freshwater mussel (Anodonta anatina) in Northern Europe // Sci. Total Environ. V. 697. 134192. https://doi.org/10.1016/j.scitotenv.2019.134192
  9. Bergmann M., Gutow L., Klages M. 2015. Marine Anthropogenic Litter. Cham: Springer. https://doi.org/10.1007/978-3-319-16510-3
  10. Bour A., Avio C.C., Gorbi S. et al. 2018. Influence of habitat, feeding mode and trophic level // Environ. Pollut. V. 243. P. 1217. https://doi.org/10.1016/j.envpol.2018.09.115
  11. Brahney J., Hallerud M., Heim E. et al. 2020. Plastic rain in protected areas of the United States // Science. V. 368(80). P. 1257. https://doi.org/10.1126/science.aaz5819
  12. Cai Y., Li C., Zhao Y. 2022. A Review of the migration and transformation of microplastics in Inland Water Systems // Int. J. Environ. Res. Public Health. V. 19(1). P. 148. https://doi.org/10.3390/ijerph19010148
  13. Carpenter E.J., Anderson S.J., Harvey G.R. et al. 1972. Polystyrene spherules in coastal waters // Science. V. 178(4062). Р. 749. https://doi.org/10.1126/science.178.4062.749
  14. Carpenter E.J., Smith K.L. 1972. Plastics on the Sargasso Sea surface // Science. V. 175. Р. 1240. https://doi.org/10.1126/science.175.4027.1240
  15. Castro-Castellon A.T., Horton A.A., Hughes J.M.R. et al. 2022. Ecotoxicity of microplastics to freshwater biota: Considering exposure and hazard across trophic levels // Sci. Total Environ. V. 816. P. 151. https://doi.org/10.1016/j.scitotenv.2021.151638
  16. Chen M., Yue Y., Bao X. et al. 2022. Microplastics as contaminants in water bodies and their threat to the aquatic animals: a mini-review // Animals. V. 12. Р. 2864. https://doi.org/10.3390/ani12202864
  17. Cole M., Lindeque P. 2013. Microplastic ingestion by zooplankton // Environ. Sci. Technol. V. 47. № 12. P. 6646. https://doi.org/10.1021/es400663f
  18. Cole M., Lindeque P., Halsband C. et al. 2011. Microplastics as contaminants in the marine environment: A review // Mar. Pollut. Bull. V. 62. Issue 12. P. 2588. https://doi.org/10.1016/j.marpolbul.2011.09.025
  19. Derraik J.G.B. 2002. The pollution of the marine environment by plastic debris: a review // Mar. Pollut. Bull. V. 44(9). P. 842. https://doi.org/10.1016/s0025-326x(02)00220-5
  20. Di M., Wang J. 2018. Microplastics in surface waters and sediments of the Three Gorges Reservoir, China // Sci. Total Environ. V. 616–617. Р. 1620. https://doi.org/10.1016/j.scitotenv.2017.10.150
  21. Ding J., Sun C., Li J. et al. 2022. Microplastics in global bivalve mollusks: A call for protocol standardization // J. Hazardous Materials. V. 438. P. 129490. https://doi.org/10.1016/j.jhazmat.2022.129490
  22. Domogalla-Urbansky J., Anger P.M., Ferling H. et al. 2019. Raman microspectroscopic identification of microplastic particles in freshwater bivalves (Unio pictorum) exposed to sewage treatment plant effluents under different exposure scenarios // Environ. Sci. Pollut. Res. V. 26. P. 2007. https://doi.org/10.1007/s11356-018-3609-3
  23. Du S., Zhu R., Cai Y. et al. 2021. Environmental fate and impacts of microplastics in aquatic ecosystems: A review // RSC Adv. V. 11. Р. 15 762. https://doi.org/10.1039/d1ra00880c
  24. Egbeocha C.O., Malek S., Emenike C.U. et al. 2018. Feasting on microplastics ingestion by and effects on marine organisms // Aquat. Biol. V. 27. P. 93. https://doi.org/10.3354/ab00701
  25. Eriksen M., Mason S., Wilson S., et al. 2013. Microplastic pollution in the surface waters of the Laurentian Great Lakes // Mar. Pollut. Bull. V. 77. P. 177e182. https://dx.doi.org/10.1016/j.marpolbul.2013.10.007
  26. Esterhuizen M., Buchenhorst L., Kim Y.J. et al. 2022. In vivo oxidative stress responses of the freshwater basket clam Corbicula javanicus to microplastic fibres and particles // Chemosphere. V. 296. P. 134 037. https://doi.org/10.1016/j.chemosphere.2022.134037
  27. Farrell P., Nelson K. 2013. Trophic level transfer of microplastic: Mytilus edulis (L.) to Carcinus maenas (L.) // Environ. Pollut. V. 177. P. 1. http://dx.doi.org/10.1016/j.envpol.2013.01.046
  28. Frank Y., Ershova A., Batasheva S. et al. 2022. Microplastics in freshwater: a focus on the Russian inland waters // Water. V. 14. Р. 3909. https://doi.org/10.3390/w14233909
  29. Free C.M., Jensen O.P., Mason S.A. et al. 2014. High-levels of microplastic pollution in a large, remote, Mountain Lake // Mar. Pollut. Bull. V. 85. P. 156. https://dx.doi.org/10.1016/j.marpolbul.2014.06.001
  30. Gregory M.R. 2009. Environmental implications of plastic debris in marine settings: entanglement, ingestion, smothering, hangers-on, hitch-hiking and alien invasions. Philosophical Transactions of the Royal Society. B // Biol. Sci. V. 364. Р. 2013. https://doi.org/10.1098/rstb.2008.0265
  31. Guilhermino L., Vieira L.R., Ribeiro D. et al. 2018. Uptake and effects of the antimicrobial florfenicol, microplastics and their mixtures on freshwater exotic invasive bivalve Corbicula fluminea // Sci. Total Environ. V. 622–623. Р. 1131. https://doi.org/10.1016/j.scitotenv.2017.12.020
  32. Guo X., Cai Y., Ma C. et al. 2021. Combined toxicity of micro/nano scale polystyrene plastics and ciprofloxacin to Corbicula fluminea in freshwater sediments // Sci. Total Environ. V. 789. https://doi.org/10.1016/j.scitotenv.2021.147887
  33. Guzzetti E., Sureda A., Tejada S. et al. 2018. Microplastic in marine organism: environmental and toxicological effects // Environ. Toxicol. and Pharmacol. V. 64. P. 164. https://doi.org/10.1016/j.etap.2018.10.009
  34. Hoellein T., Rovegno C., Uhrin A.V. et al. 2021. Microplastics in invasive freshwater mussels (dreissena sp.): spatiotemporal variation and occurrence with chemical contaminants // Frontiers in Mar. Sci. V. 8. Р. 690. https://doi.org/10.3389/fmars.2021.690401
  35. Kallenbach E.M.F., Friberg N., Lusher A. et al. 2022. Anthropogenically impacted lake catchments in Denmark reveal low microplastic pollution // Environ. Sci. Pollut. Res. V. 29. P. 47726. https://doi.org/10.1007/s11356-022-19001-8
  36. Klimova Y.S., Chuiko G.M., Pesnya D.S. et al. 2020. Biomarkers of oxidative stress in freshwater bivalve mollusks (review) // Inland Water Biol. V. 13. № 4. P. 681. https://doi.org/10.1134/S1995082920060073
  37. Li J., Liu H., Chen J.P. 2018. Microplastics in freshwater systems: A review on occurrence, environmental effects, and methods for microplastics detection // Water Res. V. 137. P. 362. https://doi.org/10.1016/j.watres.2017.12.056
  38. Li L., Su L., Cai H. et al. 2019. The uptake of microfibers by freshwater Asian clams (Corbicula fluminea) varies based upon physicochemical properties // Chemosphere. V. 221. P. 107. https://doi.org/10.1016/j.chemosphere.2019.01.024
  39. Li J., Yang D., Li L. et al. 2015. Microplastics in commercial bivalves from China // Environ. Pollut. V. 207. Р. 190. https://dx.doi.org/10.1016/j.envpol.2015.09.018
  40. Lusher A.L., Welden N.A., Sobral P. et al. 2017. Sampling, isolating and identifying microplastics ingested by fish and invertebrates // Anal. Methods. V. 9. Р. 1346. https://doi.org/10.1039/c6ay02415g
  41. Magni S., Gagné F., André C. et al. 2018. Evaluation of uptake and chronic toxicity of virgin polystyrene microbeads in freshwater zebra mussel Dreissena polymorpha (Mollusca: Bivalvia) // Sci. Total Environ. V. 631–632. Р. 778. https://doi.org/10.1016/j.scitotenv.2018.03.075
  42. Martyniuk V., Khoma V., Matskiv T. et al. 2022. Indication of the impact of environmental stress on the responses of the bivalve mollusk Unio tumidus to ibuprofen and microplastics based on biomarkers of reductive stress and apoptosis // Comp. Biochem. and Physiol. Part C. V. 261. P. 109. https://doi.org/10.1016/j.cbpc.2022.109425
  43. Masura J., Baker J., Foster G. et al. 2015. Laboratory methods for the analysis of microplastics in the marine environment: recommendations for quantifying synthetic particles in waters and sediments // NOAA Technical Memorandum NOS-OR&R-48.
  44. McNeish R.E., Kim L.H., Barrett H.A. et al. 2018. Microplastic in riverine fish is linked to species traits // Sci. Rep. V. 8. P. 11639. https://doi.org/10.1038/s41598-018-29980-9
  45. Merzel R.L., Purser L., Soucy T.L. et al. 2020. Uptake and retention of nanoplastics in quagga mussels // Global Challenges. V. 4. P. 1800104. https://doi.org/10.1002/gch2.201800104
  46. Moore C.J. 2008. Synthetic polymers in the marine environment: a rapidly increasing, long-term threat // Environ. Res. V. 108(2). P. 131. https://doi.org/10.1016/j.envres.2008.07.025
  47. OECD Guidelines for the Testing of Chemicals – 218: Sediment–water Chironomid Toxicity Test Using Spiked Sediment. Organisation for Economic Cooperation and Development. 2004. France. Paris. P. 218.
  48. Parra S., Varandas S., Santos D. et al. 2021. Multi-biomarker responses of Asian clam Corbicula fluminea (Bivalvia, Corbiculidea) to cadmium and microplastics pollutants // Water. V. 13. P. 394. https://doi.org/10.3390/w13040394
  49. Pastorino P., Prearo M., Anselmi S. et al. 2021. Use of the zebra mussel Dreissena polymorpha (Mollusca, Bivalvia) as a bioindicator of microplastics pollution in freshwater ecosystems: a case study from Lake Iseo (North Italy) // Water. V. 13. Р. 434. https://doi.org/10.3390/w13040434
  50. Patterson J., Jeyasanta K.I., Sathish N. et al. 2019. Profiling microplastics in the Indian edible oyster, Magallana bilineata collected from the Tuticorin coast, Gulf of Mannar, Southeastern India // Sci. Total Environ. V. 691. P. 727. https://doi.org/10.1016/j.scitotenv.2019.07.063
  51. Pedersen A.F., Gopalakrishnan K., Boegehold A.G. et al. 2020. Microplastic ingestion by quagga mussels, Dreissena bugensis, and its effects on physiological processes // Environ. Pollut. V. 260. P. 113964. https://doi.org/10.1016/j.envpol.2020.113964
  52. Petersen F., Hubbart J.A. 2020. The occurrence and transport of microplastics: the state of the science // Sci. Total. Environ. V. 758. Р. 143936. https://doi.org/10.1016/j.scitotenv.2020.143936
  53. Plastics Europe. Plastics – The Facts 2021. Available online: https://plasticseurope.org/knowledge-hub/plastics-the-facts-2021 (accessed on 10 February 2023).
  54. Rochman C.M., Parnis J.M., Browne M.A. et al. 2017. Direct and indirect effects of different types of microplastics on freshwater prey (Corbicula fluminea) and their predator (Acipenser transmontanus) // PLoS ONE. V. 12(11). e0187664. https://doi.org/10.1371/journal.pone.0187664
  55. Sheehan D., Power A. 1999. Effects of seasonality on xenobiotic and antioxidant defence mechanism of bivalve molluscs // Comp. Biochem. and Physiol. V. 123. № 3. P. 193.
  56. Sighicelli M., Pietrelli L., Lecce F. et al. 2018. Microplastic pollution in the surface waters of Italian Subalpine Lakes // Environ. Pollut. V. 236. P. 645. https://doi.org/10.1016/j.envpol.2018.02.008
  57. Su L., Cai H., Kolandhasamy P. et al. 2018. Using the Asian clam as an indicator of microplastic pollution in freshwater ecosystems // Environ. Pollut. V. 234. P. 347. https://doi.org/10.1016/j.envpol.2017.11.075
  58. Su L., Xue Y., Li L. et al. 2016. Microplastics in Taihu Lake, China // Environ. Pollut. V. 216. September Pages 711–719. https://doi.org/10.1016/j.envpol.2016.06.036
  59. Sussarellu R., Suquet M., Thomas Y. et al. 2016. Oyster reproduction is affected by exposure to polystyrene microplastics // Proc. Natl. Acad. Sci. U.S.A. V. 113. Р. 2430. https://doi.org/10.1073/pnas.1519019113
  60. Thiel M., Gutow L. 2005. The ecology of rafting in the marine environment. I. The floating substrata, Oceanography and Marine Biology: An Annual Review. V. 42. P. 181. https://doi.org/10.1201/9780203507810.ch6
  61. Van Cauwenberghe L., Devriese L., Galgani F. et al. 2015. Microplastics in sediments: a review of techniques, occurrence and effects. Particles in the Oceans: Implication for a safe marine environment // Mar. Environ. Res. V. 111. Р. 5. https://doi.org/10.1016/j.marenvres.2015.06.007
  62. Van Cauwenberghe L., Janssen C.R. 2014. Microplastics in bivalves cultured for human consumption // Environ. Pollut. V. 193. P. 65. https://dx.doi.org/10.1016/j.envpol.2014.06.010
  63. Van Cauwenberghe L., Vanreusel A., Mees J. et al. 2013. Microplastic pollution in deep-sea sediments // Environ. Pollut. V. 182. Р. 495. https://doi.org/10.1016/j.envpol.2013.08.013
  64. Wagner M., Scherer C., Alvarez-Muñoz D. et al. 2014. Microplastics in freshwater ecosystems: what we know and what we need to know // Environ. Sci. Europe. V. 26(1). https://doi.org/10.1186/s12302-014-0012-7
  65. Walling D.E. 2009. The Impact of global change on erosion and sediment transport by rivers: current progress and future challenges. The United Nations World Water Development. Report 3. Water in a Changing World, International Sediment Initiative of UNESCO-IHP; UNESCO: Paris, France.
  66. Wardlaw C., Prosser R.S. 2020. Investigation of microplastics in freshwater mussels (lasmigona costata) from the Grand River Watershed in Ontario, Canada // Water, Air and Soil Pollut. V. 231. Р. 405. https://doi.org/10.1007/s11270-020-04741-5
  67. Weber A., Jeckel N., Wagner M. 2020. Combined effects of polystyrene microplastics and thermal stress on the freshwater mussel Dreissena polymorpha // Sci. Total Environ. V. 718. P. 137253. https://doi.org/10.1016/j.scitotenv.2020.137253
  68. Wright S.L., Thompson R.C., Galloway T.S. 2013. The physical impacts of microplastics on marine organisms: A review // Environ. Pollut. V. 178. P. 48392. https://dx.doi.org/10.1016/j.envpol.2013.02.031
  69. Xiong X., Zhang K., Chen X. et al. 2018. Sources and distribution of microplastics in China’s largest inland lake-Qinghai Lake // Environ. Pollut. V. 235. Р. 899906. https://doi.org/10.1016/j.envpol.2017.12.081
  70. Zhang K., Gong W., Lv J. et al. 2015. Accumulation of floating microplastics behind the Three Gorges Dam // Environ. Pollut. V. 204. Р. 117. https://doi.org/10.1016/j.envpol.2015.04.023
  71. Zhang K., Shi H., Peng J. et al. 2018. Microplastic pollution in China’s inland water systems: a review of findings, methods, characteristics, effects, and management // Sci. Total. Environ. V. 630. P. 1641. https://doi.org/10.1016/j.scitotenv.2018.02.300
  72. Zhang H., Hong X., Yan S. et al. 2020. Environmentally relevant concentrations of bifenthrin induce changes in behaviour, biomarkers, histological characteristics, and the transcriptome in Corbicula fluminea // Sci. Total Environ. V. 728. Р. 138821. https://doi.org/10.1016/j.scitotenv.2020.138821

Дополнительные файлы

Доп. файлы
Действие
1. JATS XML
2. Рис. 1. Распределение по странам числа исследователей, участвующих в работах по влиянию МКП на пресноводных двустворчатых моллюсков.

Скачать (121KB)

© Российская академия наук, 2024