ON THE NONLINEAR DUST ACOUSTIC PERTURBATIONS IN THE IONOSPHERE OF MARS

Cover Page

Cite item

Full Text

Abstract

Dust acoustic solitons and nonlinear periodic waves propagating in the ionosphere of Mars in plasma–dust clouds at altitudes of about 100 km have been considered. The dependence of the soliton amplitude on the charge of dust particles and plasma electron density has been studied. It is shown that an important factor influencing the soliton parameters is the adiabatic capture of plasma electrons (ions). The possibility of the existence of nonlinear periodic waves in the ionosphere of Mars has been studied. It is shown that the spatial period of the wave can be sufficient for its recording by a spacecraft. The possibility of the occurrence of dust acoustic wave perturbations in the ionosphere of Mars should be taken into account when processing and interpreting observation data.

About the authors

Yu. S. Reznichenko

Space Research Institute, Russian Academy of Sciences; Moscow Institute of Physics and Technology (National Research University)

Email: dvju@yandex.ru
Moscow, 117997 Russia; Dolgoprudnyi, Moscow oblast, 141701 Russia

Yu. N. Izvekova

Space Research Institute, Russian Academy of Sciences

Moscow, 117997 Russia

S. I. Popel

Space Research Institute, Russian Academy of Sciences

Email: popel@cosmos.ru
Moscow, 117997 Russia

References

  1. Shukla P.K., Mamun A.A. Introduction to Dusty Plasmas Physics. Bristol/Philadelphia: Institute of Physics Publishing, 2002.
  2. Tsytovich V.N., Morfill G.E., Vladimirov S.V., Thomas H. Elementary Physics of Complex Plasmas. Berlin/Heidelberg: Springer, 2008.
  3. Fortov V.E., Ivlev A.V., Khrapak S.A., Khrapak A.G., Morfill G.E. // Phys. Reports. 2005. V. 421. P. 1.
  4. Popel S.I., Kopnin S.I., Yu M.Y., Ma J.X., Huang F. // J. Phys. D: Applied Phys. 2011. V. 44. P. 174036.
  5. Patzold M., Tellmann S., Hausler B., Hinson D., Schaa R., Tyler G.L. // Science. 2005. V. 310. P. 837.
  6. Withers P. // Adv. Space Res. 2009. V. 44. P. 277. 2009.04.027.
  7. Withers P., Fillingim M.O., Lillis R.J., Hausler B., Hinson D.P., Tyler G.L., Patzold M., Peter K., Tellmann S., Witasse O. // J. Geophys. Res. 2012. V. 117. P. A12307.
  8. Withers P., Patzold M., Witasse O., // https://sci.esa.int/web/mars-express/-/51056-new-views-of-the-martian-ionosphere
  9. Mangold M., Baratoux D., Witasse O., Encrenaz T., Sotin C. // Astron. Astrophys. Rev. 2016. V. 24. P. 15.
  10. Fox J.L., Dalgarno A. // J. Geophys. Res. 1979. V. 84. P. 7315.
  11. Fox Jane L., Benna M., Mahay P.R., Jakosky B.M. // Geophys.Res. Lett. 2015. V. 42. P. 8977.
  12. Forget F., Montmessin F., Bertaux J.L., GonzalezGalindo F., Lebonnois S., Quemerais E., Reberac A., Dimarellis E, Lopez-Valverde M.A. // J. Geophys. Res. 2009. V. 114. P. E01004.
  13. Извекова Ю.Н., Попель С.И. // Физика плазмы. 2017. Т. 43. С. 1010.
  14. Montmessin F., Bertaux J.L., Quemerais E., Korablev O., Rannou P., Forget F., Perriera S., Fussend D., Lebonnoisc S., Reberaca A. // Icarus. 2006. V. 183. P. 403.
  15. Montmessin F., Gondet B., Bibring J. P., Langevin Y., Drossart P., Forget F., Fouchet T. // J. Geophys. Res. 2007. V. 112. P. E11S90.
  16. Whiteway J.A., Komguem L., Dickinson C., Cook C., Illnicki M., Seabrook J., Popovici V., Duck T.J., Davy R., Taylor P.A., Pathak J., Fisher D., Carswell A.I., Daly M., Hipkin V., Zent A.P., Hecht M.H., Wood S.E., Tamppari L.K., Renno N., Moores J.E., Lemmon M.T., Daerden F., Smith P. // Science. 2009. V. 325. P. 68.
  17. Hayne P.O., Paige D.A., Schofield J.T., Kass D.M., Kleinbohl A., Heavens N.G., McCleese D.J. // J. Geophys. Res. 2012. V. 117. P. E08014.
  18. https://www.newsru.com/hitech/30may2021/mars_clouds.html.
  19. Gonzalez-Galindo F. // doi: 10.1093/acrefore/9780190647926.013.79.
  20. Christou A., Vaubaillon J., Withers P., Hueso R., Killen R. // arXiv:2010.14647. doi: 10.48550/arXiv.2010.14647.
  21. Клумов Б.А., Морфилл Г.Е., Попель С.И. // ЖЭТФ. 2005. Т. 127. С. 171.
  22. Trukhachev F.M., Vasiliev M.M., Petrov O.F., Vasilieva E.V. // Phys. Rev. E. 2019. V. 100. P. 063202.
  23. Дубинов А.Е., Китаев И.Н. // Теплофизика высоких температур. 2022. Т. 61. С. 11.
  24. Srinivas J., Popel S.I., Shukla P.K. // J. Plasma Phys. 1996. V. 55. P. 209.
  25. Лосева Т.В., Попель С.И., Голубь А.П. // Физика плазмы. 2012. Т. 38. С. 792.
  26. Popel S.I., Kopnin S.I., Kosarev I.N., Yu M.Y. // Adv. Space Res. 2006. V. 37. P. 414.
  27. Копнин С.И., Попель С.И. // Письма ЖТФ. 2019. Т. 45. С. 26.
  28. Попель С.И., Морозова Т.И. // Физика плазмы. 2017. Т. 43. С. 474.
  29. Гуревич A.B. // ЖЭТФ. 1967. Т. 53. С. 953.
  30. Лифшиц Е. М.,ПитаевскийЛ. П.Физическаякинетика М.: Физматлит, 2002. С. 182.
  31. Дубинский А.Ю., Резниченко Ю.С., Попель С.И. // Физика плазмы. 2019. Т. 45. С. 913.
  32. Izvekova Yu.N., Popel S.I., Morozova T.I., and Kopnin S.I. // Plasma Phys. Rep. 2024. V. 50. P. 1288.

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2024 Russian Academy of Sciences