Modeling of influence of the insulating film thickness non-uniformity along the cathode surface on its emission properties in glow gas discharge

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

A model of the cathode sheath of glow gas discharge at the existence of an insulating oxide film on the cathode surface, which thickness has non-equal values at its different sections, is formulated. An influence of the film thickness non-uniformity on the cathode effective ion-electron emission yield and discharge cathode sheath characteristics is investigated.

Full Text

Restricted Access

About the authors

G. G. Bondarenko

National Research University «Higher School of Economics»

Email: kristya@bmstu.ru
Russian Federation, Moscow, 101000

M. R. Fisher

Bauman Moscow State Technical University, Kaluga Branch

Email: kristya@bmstu.ru
Russian Federation, Kaluga, 248000

V. I. Kristya

Bauman Moscow State Technical University, Kaluga Branch

Author for correspondence.
Email: kristya@bmstu.ru
Russian Federation, Kaluga, 248000

References

  1. Райзер Ю.П. Физика газового разряда. Долгопрудный: ИД “Интеллект”, 2009. 736 с.
  2. Кудрявцев А.А., Смирнов А.С., Цендин Л.Д. Физика тлеющего разряда. СПб.: Лань, 2010. 512 с.
  3. Schwieger J., Baumann B., Wolff M. et al. // J. Phys. Conf. Ser. 2015. V. 655. Art. No. 012045.
  4. Langer R., Garner R., Paul I. et al. // Eur. Phys. J. Appl. Phys. 2016. V. 76. No. 1. Art. No. 10802.
  5. Savoye E.D., Anderson D.E. // J. Appl. Phys. 1967. V 38. No. 8. P. 3245.
  6. Riedel M., Düsterhöft H., Nagel F. // Vacuum. 2001. V. 61. P. 169.
  7. Bondarenko G.G., Fisher M.R., Kristya V.I., Prassitski V.V. // Vacuum. 2004. V. 73. P. 155.
  8. Suzuki M., Sagawa M., Kusunoki T. et al. // IEEE Trans. ED. 2012. V. 59. No. 8. P. 2256.
  9. Bondarenko G.G., Fisher M.R., Kristya V.I. // Vacuum. 2016. V. 129. P. 188.
  10. Bondarenko G.G., Kristya V.I., Savichkin D.O. // Vacuum. 2018. V. 149. P. 114.
  11. Кристя В.И., Мьо Ти Ха // Поверхность. Рентген. синхротр. и нейтрон. исслед.2020. № 5. С. 63; Kristya V.I., Myo Thi Ha // J. Surf. Invest.: X-Ray, Synchrotron Neutron Tech. 2020. V. 14. No. 3. P. 490.
  12. Кристя В.И., Мьо Ти Ха, Фишер М.Р. // Изв. РАН. Сер. физ. 2020. Т. 84. № 6. С. 846; Kristya V.I., Myo Thi Ha, Fisher M.R. // Bull. Russ. Acad. Sci. Phys. 2020. V. 84. No. 6. P. 698.
  13. Бондаренко Г.Г., Кристя В.И., Мьо Ти Ха, Фишер М.Р. // Поверхность. Рентген. синхротр. и нейтрон. исслед.2022. № 8. С. 25; Bondarenko G.G., Kristya V.I., Myo Thi Ha, Fisher M.R. // J. Surf. Invest.: X-Ray, Synchrotron Neutron Tech. 2022. V. 16. No. 4. P. 581.
  14. Woodworth J.R., Aragon B.P., Hamilton T.W. // Appl. Phys. Lett. 1997. V. 70. No. 15. P. 1947.
  15. Kim D., Economou D.J. // J. Appl. Phys. 2003. V. 94. No. 5. P. 2852.
  16. Kim D., Economou D.J. // J. Appl. Phys. 2004. V. 95. No. 7. P. 3311.
  17. Бондаренко Г.Г., Кристя В.И., Йе Наинг Тун // Изв. вузов. Физ. 2015. Т. 58. № 9. С. 99; Bondarenko G.G., Kristya V.I., Tun J.N. // Russ. Phys. J. 2016. V. 58. No. 9. P. 1313.
  18. Phelps A.V., Petrović Z. Lj. // Plasma Sources Sci. Technol. 1999. V. 8. No. 3. P. R21.
  19. Forbes R.G., Edgcombe C.J., Valdrè U. // Ultramicroscopy. 2003. V. 95. P. 57.
  20. Hourdakis E., Bryant G.W., Zimmerman N.M. // J. Appl. Phys. 2006. V. 100. No. 12. Art. No. 123306.
  21. Sun L., Zhou W., Jiang W. et al. // J. Phys. D. Appl. Phys. 2020. V. 53. No. 45. Art. No. 455201.
  22. Крютченко О.Н., Маннанов А.Ф., Носов А.А. и др. // Поверхность. Физика, химия, механика. 1994. № 6. С. 93.
  23. Xu N.S., Chen J., Deng S.Z. // Appl. Phys. Lett. 2000. V. 76. No. 17. P. 2463.
  24. Klas M., Černák P., Borkhari A.F. et al. // Vacuum. 2021. V. 191. Art. No. 110327.
  25. Forbes R.G. // J. Vac. Sci. Tech. B. 1999. V. 17. No. 2. P. 534.
  26. Kusunoki T., Sagawa M., Suzuki M. et al. // IEEE Trans. ED. 2002. V. 49. No. 6. P. 1059.
  27. Зыкова Е.В., Кучеренко Е.Т., Айвазов В.Я. // Радиотехн. и электрон. 1979. Т. 24. № 7. С. 1464.
  28. Rózsa K., Gallagher A., Donkó Z. // Phys. Rev. E. 1995. V. 52. No. 1. P. 913.
  29. Eckertova L. // Czech. J. Phys. B. 1989. V. 39. No. 5. P. 559.
  30. Eckertova L. // Int. J. Electron. 1990. V. 69. No. 1. P. 65.
  31. Hickmott T.W. // J. Appl. Phys. 2000. V. 87. No. 11. P. 7903.
  32. Hickmott T.W. // J. Appl. Phys. 2010. V. 108. No. 9. Art. No. 093703.
  33. Кристя В.И., Мьо Ти Ха, Фишер М.Р. // Поверхность. Рентген. синхротр. и нейтрон. исслед.2019. № 4. С. 79; Kristya V.I., Myo Thi Ha, Fisher M.R. // J. Surf. Invest.: X-Ray, Synchrotron Neutron Tech. 2019. V. 13. No. 2. P. 339.

Supplementary files

Supplementary Files
Action
1. JATS XML
2. Fig. 1. Dependence of the emission efficiency of sections of a dielectric film of thickness Hfk on the cathode surface (dashed lines, 1 – Hf2 = 5 nm, 2 – Hf3 = 6 nm, 3 – Hf4 = 7 nm, 4 – Hf5 = 8 nm) on the discharge current density, as well as its value averaged over the cathode surface (solid line).

Download (58KB)
3. Fig. 2. Dependence of the effective coefficient of ion-electron emission of cathode sections with a dielectric film of thickness Hfk (dashed lines, 1 – Hf2 = 4 nm and Hf2 = 5 nm, 2 – Hf3 = 6 nm, 3 – Hf4 = 7 nm, 4 – Hf5 = 8 nm) on the discharge current density, as well as its value averaged over the cathode surface (solid line).

Download (62KB)
4. Fig. 3. Volt-ampere characteristic of a glow discharge in argon with a cathode without a dielectric film (dashed line), with a film of constant thickness (solid line 1) and with a film of variable thickness (solid line 2). The dots are the experimental values ​​of the cathode voltage drop Uc in the case of a cathode without a film [28].

Download (59KB)

Copyright (c) 2024 Russian Academy of Sciences