Magnetoelectric response of a polymer composite filled with a mixture of CoFe2O4/BaTiO3 particles

Cover Page

Cite item

Full Text

Abstract

We studied the magnetoelectric response of a composite material based on a rubber-like polymer filled with submicron-sized cobalt ferrite and barium titanate particles. Using a computer experiment, the dependence of the magnetoelectric response of a representative volume of such a composite on the system parameters is studied. Based on the results of the computer experiment, methods for enhancing the magnetoelectric response of such composites are proposed.

About the authors

A. A Ignatov

Immanuel Kant Baltic Federal University

Email: artem.ignatov98@gmail.com
Kaliningrad, Russia

O. V Stolbov

Immanuel Kant Baltic Federal University; Institute of Continuous Media Mechanics of the Ural Branch of the Russian Academy of Science

Kaliningrad, Russia; Perm, Russia

Yu. L Raikher

Immanuel Kant Baltic Federal University; Institute of Continuous Media Mechanics of the Ural Branch of the Russian Academy of Science

Kaliningrad, Russia; Perm, Russia

V. V Rodionova

Immanuel Kant Baltic Federal University

Kaliningrad, Russia

References

  1. Dai J. Ferroic materials for smart systems: From fundamentals to device applications. Wiley-VCH Verlag GmbH & Co. KGaA, 2020. P. 259.
  2. Makarova L.A., Issev D.A., Omelyanchik A.S. et al. // Polymers. 2022. V. 14. No. 1. Art. No. 153.
  3. Stepanov G.V., Borin D.Yu., Raikher Yu.L. et al. // J. Phys. Cond. Matter. 2008. V. 20. No. 20. Art. No. 204121.
  4. Date M., Kanamori J., Tachiki M. // J. Phys. Soc. Japan. 1961. V. 16. No. 12. P. 2589.
  5. Амиров А.А., Каминский А.С., Архипова Е.А. и др. // Изв. РАН. Сер. физ. 2023. Т. 87. № 6. С. 813; Amirov A.A., Kaminskiy A.S., Arkhipova E.A. et al. // Bull. Russ. Acad. Sci. Phys. 2023. V. 87. No. 6. P. 715.
  6. Omelyanchik A., Antipova V., Gritsenko C. et al. // Nanomaterials. 2021. V. 11. Art. No. 1154.
  7. Vida J.V., Turutin A.V., Kubas I.V. et al. // IEEE T—UFFC. 2020. V. 67. P. 1219.
  8. Turutin A.V., Vidal J.V., Kubasov I.V. et al. // J. Magn. Magn. Mater. 2019. V. 486. Art. No. 165209.
  9. Pereira N., Lima A.C., Correia V. et al. // Materials. 2020. V. 13. Art. No. 1729.
  10. Jiang Q., Liu F., Yan H. et al. // J. Amer. Ceram. Soc. 2011. V. 94. P. 2311.
  11. Stognij A.I., Novitskii N.N., Trukhanov S.V. et al. // J. Magn. Magn. Mater. 2019. V. 485. P. 291.
  12. Zhang J., Li P., Wen Y. et al. // Sens. Actuators A. Phys. 2014. V. 214. P. 149.
  13. Spaldin N.A. // Science. 2005. V. 309. P. 391.
  14. Pereira N., Lima A.C., Lanceros-Mendez S., Martins P. // Materials. 2020. V. 13. Art. No. 4033.
  15. Makarova L.A., Alekhina J., Isaev D. et al. // J. Physics D. Appl. Phys. 2021. V. 54. No. 1. Art. No. 015003.
  16. Магомедов К.Э., Омельянчик А.С., Воронцов С.А. и др. // Изв. РАН. Сер. физ. 2023. Т. 87. № 6. С. 819; Magomedov K.E., Omelyanchik A.S., Vorontsov S.A. et al. // Bull. Russ. Acad. Sci. Phys. 2023. V. 87. No. 6. P. 720.
  17. Зубарев А.Ю., Искакова Л.Ю. // Изв. РАН. Сер. физ. 2024. Т. 88. № 4. С. 653; Zubarev A.Y., Iskakova L.Y. // Bull. Russ. Acad. Sci. Phys. 2024. V. 88. No. 4. P. 563.
  18. Сивухин Д.В. Общий курс физики. Т. 3. Электричество. Москва: Наука, 1982.
  19. Гайдук Ю.С., Коробко Е.В., Копиков Д.А. и др. // Конденс. среды и межфаз. границы. 2022. Т. 24. № 1. С. 19.
  20. Kang S., Choi K., Nam J.D., Choi H.J. // Materials. 2020. V. 13. Art. No. 4597.
  21. Saveliev D.V., Belyaeva I.A., Chashin D.V. et al. // Materials. 2020. V. 13. Art. No. 3297.
  22. Столбов О.В., Райхер Ю.Л. // Изв. РАН. Сер. физ. 2024. Т. 88. № 4. С. 677; Stolbov O.V., Raikher Yu.L. // Bull. Russ. Acad. Sci. Phys. 2024. V. 88. No. 4. P. 586.
  23. Ландау Л.Д., Лифшиц Е.М. Электродинамика сплошных сред. Москва: Наука, 1982.
  24. Желудев Н.С. Электрические кристаллы. М.: Наука, 1979.
  25. Ландау Л.Д., Лифшиц Е.М. Механика сплошных сред. М.: Наука, 1982.

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2025 Russian Academy of Sciences