Effects of the microstructure of carbon materials under ion-beam surface modification

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

The effect of high-fluence (>1018 cm–2) irradiation by helium and argon ions with energy of 30 keV on the structure and morphology of the surface of carbon materials with significantly different microstructure: highly oriented pyrolytic graphite, glassy carbon, carbon fibres from PAN and viscose has been studied experimentally.

Full Text

Restricted Access

About the authors

N. N. Andrianova

Moscow State University; Moscow Aviation Institute (National Research University)

Email: ov.mikhail@gmail.com

Skobeltsyn Institute of Nuclear Physics, Moscow State University

Russian Federation, Moscow, 119991; Moscow, 125993

A. M. Borisov

Moscow State University; Moscow Aviation Institute (National Research University); Moscow State Technological University “STANKIN”

Email: ov.mikhail@gmail.com

Skobeltsyn Institute of Nuclear Physics, Moscow State University

Russian Federation, Moscow, 119991; Moscow, 125993; Moscow, 127055

E. A. Vorobyeva

Moscow State University

Email: ov.mikhail@gmail.com

Skobeltsyn Institute of Nuclear Physics

Russian Federation, Moscow, 119991

M. A. Ovchinnikov

Moscow State University

Author for correspondence.
Email: ov.mikhail@gmail.com

Skobeltsyn Institute of Nuclear Physics

Russian Federation, Moscow, 119991

V. Sleptsov

Moscow Aviation Institute (National Research University)

Email: ov.mikhail@gmail.com
Russian Federation, Moscow, 125993

R. A. Tsyrkov

Moscow Aviation Institute (National Research University)

Email: ov.mikhail@gmail.com
Russian Federation, Moscow, 125993

References

  1. Pierson H.O. Handbook of carbon, graphite, diamond and fullerenes. N.J.: Noyes Publ., 1993. 419 p.
  2. Virgil’ev Yu.S., Kalyagina I.P. // Inorg. Mater. 2004. V. 40. Art. No. S33.
  3. Buckley J.D., Edie D.D. Carbon-carbon materials and composites. N.J.: Noyes Publications, 1993. 281 p.
  4. Balat-Pichelin M., Eck J., Sans J.-L., Gle´nat H. // J. Mater. Eng. Perf. 2021. V. 30. P. 8117.
  5. Burchell T.D. // MRS Bulletin. 1997. V. 22. No. 4. P. 29.
  6. Liu D., Cherns D., Johns S. et al. // Carbon. 2021. V. 173. P. 215.
  7. Bacon D.J., Rao A.S. // J. Nucl. Mater. 1980. V. 91. P. 178.
  8. Puntakov N.A., Begrambekov L.B., Grunin A.V. et al. // J. Phys. Conf. Ser. 2019. V. 1396. Art. No. 012035.
  9. Беграмбеков Л.Б., Вергазов С.В., Захаров А.М., Тельковский В.Г. // Изв. АН СССР. Сер. физ. 1994. Т. 58. № 4. С. 187.
  10. Andrianova N.N., Borisov A.M., Mashkova E.S. et al. // Vacuum. 2021. V. 188. Art. No. 110177.
  11. Андрианова Н.Н., Борисов А.М., Казаков В.А. и др. // Изв. РАН. Сер. физ. 2020. Т. 84. № 6. С. 857.; Andrianova N.N., Borisov A.M., Kazakov V.A. et.al. // Bull. Russ. Acad. Sci. Phys. 2020. V. 84. No. 6. P. 707.
  12. Niwase K. // Phys. Rev. B. 1997. V. 52. P. 15785.
  13. https://ssrn.com/abstract=4165825.
  14. Andrianova N.N., Borisov A.M., Makunin A.V. et al. // J. Phys. Conf. Ser. 2020. V. 1713. Art. No. 012005.
  15. Андрианова Н.Н., Борисов А.М., Метель А.С. и др. // Поверхность. Рентген. синхротр. и нейтрон. исслед. 2023. № 11. С. 3; Andrianova N.N., Borisov A.M., Metel A.S. et al. // J. Surf. Invest.: X-Ray, Synchrotron Neutron Tech. 2023. V. 17. No. 6. P. 1181.
  16. Mashkova E.S., Molchanov V.A. Medium-energy ion reflection from solids. Amsterdam, 1985. 444 p.
  17. Was G.S., Jiao Z., Getto E. et al. // Scripta Mater. 2014. V. 88. P. 33.
  18. Вас Г.С. Основы радиационного материаловедения. Металлы и сплавы. М.: Техносфера, 2014. 992 с.
  19. Ferrari A.C., Robertson J. // Phys. Rev. B. 2000. V. 61. No. 20. Art. No. 14095.
  20. Pimenta M.A., Dresselhaus G., Dresselhaus M.S. et al. // Phys. Chem. Chem. Phys. 2007. V. 9. No. 11. P. 1276.
  21. Hbiriq Y., Ammar M.R., Fantini C. et al. // Phys. Rev. B. 2023. V. 107. No. 13. Art. No. 134305
  22. Niwase K. // Int. J. Spectrosc. 2012. V. 2012. Art. No. 197609.
  23. Андрианова Н.Н., Аникин В.А. Борисов А.М. и др. // Изв. РАН. Сер. физ. 2018. Т. 82. № 2. С. 140; Andrianova N.N., Anikin V.A., Borisov A.M. et al. // Bull. Russ. Acad. Sci. Phys. 2018. V. 82. No. 2. P. 122.
  24. Гусева М.И., Мартыненко Ю.В. // УФН. 1981. Т. 135. № 11. С. 671; Guseva M.I., Martynenko Yu.V. // Phys. Usp. 1981. V. 24. No. 11. P. 996.

Supplementary files

Supplementary Files
Action
1. JATS XML
2. Fig. 1. SEM images of ion-induced morphology after irradiation with helium (a, b, c, d) and argon (d, f, g, h) ions with an energy of 30 keV of HOPG UPV-1T (a, d), carbon fibers VMN-4 (b, f), carbon fabric TGN-2MK (c, g) and glassy carbon SU-2500 (d, h). The irradiation fluence for HOPG and glassy carbon was 1018 cm–2, for carbon fibers >3⋅1018 cm–2. The irradiation temperature was above 200°C.

Download (456KB)
3. Fig. 2. Raman spectra of carbon materials before (a) and after (b) high-dose irradiation with helium and argon ions with an energy of 30 keV.

Download (308KB)
4. Fig. 3. SEM images of the HOPG surface morphology after irradiation with 30 keV helium ions at room temperature (a) and at 400°C (b, c). Fluence 1⋅1018 cm–2.

Download (247KB)
5. Fig. 4. SEM images of the surface of PAN carbon fibers after irradiation with 15 keV argon ions (a) and 30 keV helium ions (b) at room temperature and a fluence of 3⋅1018 cm–2. SEM images of nanosized wall structures upon irradiation of HOPG (c) and SU-2500 glassy carbon (d) with 30 keV argon ions at temperatures of 400 and 500°C, respectively. Irradiation fluence is 1⋅1018 cm–2.

Download (276KB)

Copyright (c) 2024 Russian Academy of Sciences