Atomistic simulation of self-diffusion in nickel grain boundaries

Мұқаба

Дәйексөз келтіру

Толық мәтін

Ашық рұқсат Ашық рұқсат
Рұқсат жабық Рұқсат берілді
Рұқсат жабық Тек жазылушылар үшін

Аннотация

The self-diffusion coefficient for symmetrical tilt boundaries and for the general type of grain boundaries in nickel has been calculated by atomistic simulation methods. The special tilt grain boundaries have been simulated in the bicrystal model, and the general type of grain boundaries in the nanocrystal model. The self-diffusion coefficient is presented as a temperature dependence. The activation energies of self-diffusion have been determined.

Толық мәтін

Рұқсат жабық

Авторлар туралы

M. Urazaliev

M.N. Mikheev Institute of Metal Physics of the Ural Branch of the Russian Academy of Sciences

Хат алмасуға жауапты Автор.
Email: urazaliev@imp.uran.ru
Ресей, Ekaterinburg

M. Stupak

M.N. Mikheev Institute of Metal Physics of the Ural Branch of the Russian Academy of Sciences

Email: urazaliev@imp.uran.ru
Ресей, Ekaterinburg

V. Popov

M.N. Mikheev Institute of Metal Physics of the Ural Branch of the Russian Academy of Sciences

Email: urazaliev@imp.uran.ru
Ресей, Ekaterinburg

Әдебиет тізімі

  1. Кульков В.Г. // Изв. РАН. Сер. физ. 2020. Т. 84. № 9. С. 1232; Kul’kov V.G. // Bull. Russ. Acad. Sci. Phys. 2020. V. 84. No. 9. P. 1043.
  2. Звягинцева А.В. // Изв. РАН. Сер. физ. 2020. Т. 84. № 9. С. 1290; Zvyginceva A.V. // Bull. Russ. Acad. Sci. Phys. 2020. V. 84. No. 9. P. 1097.
  3. Mishin Y., Herzig C. // Mater. Sci. Eng. A. 1999. V. 260. P. 55.
  4. Kaur I., Mishin Y., Gust W. Fundamentals of grain and interphase boundary diffusion. John Wiley, 1995. 5536 p.
  5. Budke E., Herzig C., Prokofjev S., Shvindlerman L.S. // Mater. Sci. Forum. 1996. V. 207. P. 465.
  6. Suzuki A., Mishin Y. // Interface Sci. 2003. V. 11. P. 131.
  7. Nomura M., Adams J.B. // J. Mater. Res. 1992. V. 7. P. 3202.
  8. Keblinski P., Wolf D., Phillpot S.R., Gleiter H. // Philos. Mag. A. 1999. V. 79. P. 2735.
  9. Sorensen M.R., Mishin Y., Voter A.F. // Phys. Rev. B. 2000. V. 62. No. 6. P. 3658.
  10. Mendelev M.I., Zhang H., Srolovitz D.J. // J. Mater. Res. 2005. V. 20. P. 1146.
  11. Mishin Y., Asta M., Li J. // Acta Mater. 2010. V. 58. P. 1117.
  12. Bai X.M., Voter A.F., Hoagland R.G. et al. // Science. 2010. V. 327. P. 1631.
  13. Bai X.M., Vernon L.J., Hoagland R.G. et al. // Phys. Rev. B. 2012. V. 85. P. 214103.
  14. Uberuaga B.P., Vernon L.J., Martinez E., Voter A.F. // Sci. Reports. 2015. V. 5. No. 1. P. 9095.
  15. Mohammadzadeh R., Mohammadzadeh M. // J. Appl. Phys. 2018. V. 124. Art. No. 035102.
  16. Wang Y.J., Gao G.J.J., Ogata S. // Phys Rev. B. 2013. V. 88. Art. No. 115413.
  17. Mohammadzadeh M., Mohammadzadeh R. // Comput. Mater. Sci. 2017. V. 129. P. 239.
  18. Mohammadzadeh R. // J. Appl. Phys. 2019. V. 125. No. 13. P. 135103.
  19. Bokstein B.S. // NSMs. 1995. V. 6. P. 873.
  20. Yamakov P.V., Wolf D., Phillpot S.R., Gleiter H. // Acta Mater. 2002. V. 50. No. 1. P. 61.
  21. Shvindlerman L. S., Gottstein G., Ivanov V. A. et al. // J. Mater. Sci. 2006. V. 41. P. 7725.
  22. Plimpton S. // J. Comput. Phys. 1995. V. 117. No. 1. P. 1.
  23. Stukowski A. // Mater. Sci. Eng. 2010. V. 18. Art. No. 015012.
  24. Семенов М.Ю., Королев И.П., Арестов В. // Изв. РАН. Сер. физ. 2021. Т. 85. № 7. С. 948; Semenov M.Yu., Korolev I.P., Arestov V. // Bull. Russ. Acad. Sci. Phys. 2021. V. 85. No. 7. P. 728.
  25. Stoller R.E., Tamm A., Béland L.K. et al. // J. Chem. Theory Comput. 2016. V. 12. No. 6. P. 2871.
  26. Уразалиев М.Г., Ступак М.Е., Попов В.В. // Физ. металл. металловед. 2021. Т. 122. С. 713; Urazaliev M.G., Stupak M.E., Popov V.V. // Phys. Metals. Metallogr. 2021. V. 122. P. 665.
  27. Polyak B.T. // USSR Comput. Math. Math. Phys. 1969. V. 9. No. 4. P. 94.
  28. Tschopp M.A., Solanki K.N., Gao F. et al. // Phys. Rev. B. 2012. V. 85. Art. No. 064108.
  29. Nosé S. // J. Chem. Phys. 1984. V. 81. No. 1. P. 511.
  30. Hoover W.G., Holian B.L. // Phys. Lett. Sect. A. 1996. V. 211. P. 253.
  31. Hirel P. // Comput. Phys. Comm. 2015. V. 197. P. 212.
  32. Wagih M., Schuh C.A. // Scripta Mater. 2023. V. 237. Art. No. 115716.
  33. Starikov S., Mrovec M., Drautz R. // Acta Mater. 2020. V.188. P. 560.
  34. Frolov T., Olmsted D., Asta M. et al. // Nature Commun. 2013. V. 4. No. 1. Art. No. 1899.
  35. Maxwell-Garnett J.C., Larmor J.Xii // Philos. Trans. Royal Soc. Lond. A. Contain. Pap. Math. Phys. Char. 1904. V. 203. No. 359–371. P. 385.
  36. Hart E.W. // Acta Metallurg. 1957. V. 5. No. 10. P. 597.
  37. Faken D., Jónsson H. // Comput. Mater. Sci. 1994. V. 2. No. 2. P. 279.
  38. Fultz B., Frase H. // Hyperfine Interact. 2000. V. 130. P. 81.
  39. Canon R.F, Stark J.P. // J. Appl. Phys. 1969. V. 40. No. 11. P. 4366.
  40. Бокштейн С.З., Кишкин С.Т., Мишин Ю.М., Разумовский И.М. // Докл. АН СССР. 1985. Т. 280. № 5. C. 1125.
  41. https://drive.google.com/drive/folders/117hFltef46fj3GGeHexiGVwocHSHv4J-?usp=drive_link
  42. http://dx.doi.org/10.13140/RG.2.2.23789.60641

Қосымша файлдар

Қосымша файлдар
Әрекет
1. JATS XML
2. Fig. 1. The model of a nickel bicrystal (a) and nanocrystal (b) used in this work, visualized using the CNA structure analyzer [37] in the OVITO program. The fcc lattice of nickel atoms is shown in green, while the bcc and hcp lattices are blue and red, respectively. The remaining atoms (grain boundary network) are shown in gray.

Жүктеу (27KB)
3. Fig. 2. The structure of the GBs studied in this work: Σ 9(114) (a), Σ 11(113) (b), Σ 3(111) (c), Σ 11(332) (d), Σ 9(221) (e). The structure was visualized using the CNA structure analyzer [37] in the OVITO program. The fcc lattice of nickel atoms is shown in green, while the bcc and hcp lattices are blue and red, respectively. The remaining atoms (grain boundary network) are shown in gray, and the hcp lattice is shown in red.

Жүктеу (87KB)
4. Fig. 3. An example of the trajectory of atomic displacement at a temperature of 1100 K in the Σ 11(113) GB from different angles (a, b), in a nanocrystal (c) and a graph of the dependence of the mean square displacement (d, d) for a bicrystal and a nanocrystal, respectively. The displacements are visualized using the Displacement vector modifier in the OVITO program.

Жүктеу (83KB)
5. Fig. 4. Temperature dependence of the self-diffusion coefficient in the nickel GBs studied in this work.

Жүктеу (35KB)

© Russian Academy of Sciences, 2024