Lattice Study of the Equation of State of a Rotating Gluon Plasma

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

The effect of uniform rotation on the equation of state of gluodynamics has been studied in lattice simulation. To this end, the system has been considered in the corotating reference frame, where the rotation can be modeled as an external gravitational field. The free energy of the studied system in the case of sufficiently slow rotation can be expanded in a power series in the angular velocity. The moment of inertia given by the second-order coefficient of this expansion has been calculated and its dependence on the temperature and the dimensions of the rotating system has been determined. Our results indicate that the moment of inertia of gluodynamics is negative up to the temperature T * ~ 1.5Tc, where Tc is the critical temperature of the confinement/deconfinement phase transition, and becomes positive at temperatures T > T *. The negative moment of inertia has been attributed to the thermodynamic instability of the gluon plasma with respect to uniform rotation.

About the authors

V. V Braguta

Bogoliubov Laboratory of Theoretical Physics, Joint Institute for Nuclear Research, 141980, Dubna, Moscow region, Russia

Email: vvbraguta@theor.jinr.ru

I. E Kudrov

Moscow Institute of Physics and Technology (National Research University), 141700, Dolgoprudnyi, Moscow region, Russia; Institute for High Energy Physics, National Research Center Kurchatov Institute, 142281, Protvino, Moscow region, Russia

Email: ilyakudrov@yandex.ru

A. A Roenko

Bogoliubov Laboratory of Theoretical Physics, Joint Institute for Nuclear Research, 141980, Dubna, Moscow region, Russia; Dubna State University, 141980, Dubna, Moscow region, Russia

Email: roenko@theor.jinr.ru

D. A Sychev

Bogoliubov Laboratory of Theoretical Physics, Joint Institute for Nuclear Research, 141980, Dubna, Moscow region, Russia; Moscow Institute of Physics and Technology (National Research University), 141700, Dolgoprudnyi, Moscow region, Russia

Email: sychev.da@phystech.edu

M. N Chernodub

Institut Denis Poisson UMR 7013, Université de Tours, 37200, Tours, France

Author for correspondence.
Email: maxim.chernodub@univ-tours.fr

References

  1. L. Adamczyk, J.K. Adkins, G. Agakishev, et al. (STAR), Nature 548, 62 (2017); arXiv:1701.06657 [nuclex].
  2. S. Ebihara, K. Fukushima, and K. Mameda, Phys. Lett. B 764, 94 (2017); arXiv:1608.00336 [hep-ph].
  3. M. Chernodub and S. Gongyo, JHEP 01, 136 (2017); arXiv:1611.02598 [hep-th].
  4. Y. Jiang and J. Liao, Phys. Rev. Lett. 117, 192302 (2016); arXiv:1606.03808 [hep-ph].
  5. H. Zhang, D. Hou, and J. Liao, Chin. Phys. C 44, 111001 (2020); arXiv:1812.11787 [hep-ph].
  6. X. Wang, M. Wei, Z. Li, and M. Huang, Phys. Rev. D 99, 016018 (2019); arXiv:1808.01931 [hep-ph].
  7. M.N. Chernodub, Phys. Rev. D 103, 054027 (2021); arXiv:2012.04924 [hep-ph].
  8. X. Chen, L. Zhang, D. Li, D. Hou, and M. Huang, JHEP 07, 132 (2021); arXiv:2010.14478 [hep-ph].
  9. N. Sadooghi, S.M.A. Tabatabaee Mehr, and F. Taghinavaz, Phys. Rev. D 104, 116022 (2021); arXiv:2108.12760 [hep-ph].
  10. Y. Fujimoto, K. Fukushima, and Y. Hidaka, Phys. Lett. B 816, 136184 (2021); arXiv:2101.09173 [hepph].
  11. A.A. Golubtsova, E. Gourgoulhon, and M.K. Usova, Nucl. Phys. B 979, 115786 (2022); arXiv:2107.11672 [hep-th].
  12. Y.-Q. Zhao, S. He, D. Hou, L. Li, and Z. Li (2022), arXiv:2212.14662 [hep-ph].
  13. A.A. Golubtsova and N. S. Tsegel'nik (2022), arXiv:2211.11722 [hep-th].
  14. N.R.F. Braga, L. F. Ferreira, and O.C. Junqueira (2023), arXiv:2301.01322 [hep-th].
  15. M.N. Chernodub (2022), arXiv:2210.05651 [quant-ph].
  16. M.N. Chernodub, (2022), arXiv:2208.04808 [hepth].
  17. S. Chen, K. Fukushima, and Y. Shimada, Phys. Rev. Lett. 129, 242002 (2022); arXiv:2207.12665 [hep-ph].
  18. A. Yamamoto and Y. Hirono, Phys. Rev. Lett. 111, 081601 (2013); arXiv:1303.6292 [hep-lat].
  19. V.V. Braguta, A.Y. Kotov, D.D. Kuznedelev, and A.A. Roenko, JETP Lett. 112, 6 (2020).
  20. V.V. Braguta, A.Y. Kotov, D.D. Kuznedelev, and A.A. Roenko, Phys. Rev. D 103, 094515 (2021); arXiv:2102.05084 [hep-lat].
  21. M.N. Chernodub, V.A. Goy, and A.V. Molochkov, (2022), arXiv:2209.15534 [hep-lat].
  22. V.V. Braguta, A. Kotov, A. Roenko, and D. Sychev, PoS LATTICE2022, 190 (2023); arXiv:2212.03224 [hep-lat].
  23. V. Braguta, A.Y. Kotov, D. Kuznedelev, and A. Roenko, PoS LATTICE2021, 125 (2022); arXiv:2110.12302 [hep-lat].
  24. G. Boyd, J. Engels, F. Karsch, E. Laermann, C. Legeland, M. Lutgemeier, and B. Petersson, Nucl. Phys. B 469, 419 (1996); arXiv:heplat/9602007.
  25. C. Bonati, M. D'Elia, M. Mariti, F. Negro, and F. Sanfilippo, Phys. Rev. D 89, 054506 (2014); arXiv:1310.8656 [hep-lat].
  26. A. Bazavov, T. Bhattacharya, C. DeTar et al. (HotQCD), Phys. Rev. D 90, 094503 (2014); arXiv:1407.6387 [hep-lat].
  27. S. Bors'anyi, Z. Fodor, C. Hoelbling, S.D. Katz, S.Krieg, and K.K. Szab'o, Phys. Lett. B 730, 99 (2014).
  28. J.N. Guenther, R. Bellwied, S. Borsanyi, Z. Fodor, S.D. Katz, A. Pasztor, C. Ratti, and K.K. Szab'o, Nucl. Phys. A 967, 720 (2017); arXiv:1607.02493 [hep-lat].
  29. V.V. Braguta, M.N. Chernodub, A.A. Roenko, and D.A. Sychev (2023), arXiv:2303.03147 [hep-lat].
  30. G. Curci, P. Menotti, and G. Paffuti, Phys. Lett. B 130, 205 (1983).
  31. M. L¨uscher and P.Weisz, Phys. Lett. B 158, 250 (1985).
  32. J. Lonˇcar, B. Igrec, and D. Babi'c, Symmetry 14, 529 (2022).
  33. M.N. Chernodub, Phys. Rev. D 87, 025021 (2013); arXiv:1207.3052 [quant-ph].
  34. A. Flachi and M. Edmonds, Phys. Rev. D 107, 025008 (2023); arXiv:2212.02776 [hep-th].
  35. B. F. Whiting and J.W. York, Jr., Phys. Rev. Lett. 61, 1336 (1988).
  36. T. Prestidge, Phys. Rev. D 61, 084002 (2000); 10.1103/physrevd.61.084002.
  37. H. S. Reall, Phys. Rev. D 64, 044005 (2001); 10.1103/physrevd.64.044005.

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2023 Российская академия наук