Decomposition of the Static Potential in SU(3) Gluodynamics

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

After fixing the Maximal Abelian gauge in  lattice gluodynamics we decompose the nonabelian gauge field into the Abelian field created by Abelian monopoles and the modified nonabelian field with monopoles removed. We then calculate respective static potentials in the fundamental representation and show that the sum of these potentials approximates the nonabelian static potential with good precision at all distances considered. Comparison with other ways of decomposition is made.

About the authors

V. G Bornyakov

Institute for High Energy Physics, National Research Center Kurchatov Institute

Email: vitaly.bornyakov@ihep.ru
142281, Protvino, Moscow region, Russia

I. E Kudrov

Institute for High Energy Physics, National Research Center Kurchatov Institute

Author for correspondence.
Email: vitaly.bornyakov@ihep.ru
142281, Protvino, Moscow region, Russia

References

  1. V. G. Bornyakov, M. I. Polikarpov, G. Schierholz, T. Suzuki, and S. N. Syritsyn, Nucl. Phys. B Proc. Suppl. 153, 25 (2006); arXiv:hep-lat/0512003 [hep-lat].
  2. V. G. Bornyakov, I. Kudrov, and R. N. Rogalyov, Phys. Rev. D 105(5), 054519 (2022); arXiv:2101.04196 [hep-lat].
  3. T. Suzuki and I. Yotsuyanagi, Phys. Rev. D 42, 4257 (1990).
  4. S. Hioki, S. Kitahara, S. Kiura, Y. Matsubara, O. Miyamura, S. Ohno, and T. Suzuki, Phys. Lett. B 272, 326 (1991)
  5. Erratum ibid.: Phys. Lett. B 281, 416 (1992).
  6. G. S. Bali, V. Bornyakov, M. Muller-Preussker, and K. Schilling, Phys. Rev. D 54 (1996) 2863.
  7. V. Bornyakov and M. Muller-Preussker, Nucl. Phys. Proc. Suppl. 106, 646 (2002).
  8. N. Sakumichi and H. Suganuma, Phys. Rev. D 90(11), 111501 (2014).
  9. A. S. Kronfeld, M. L. Laursen, G. Schierholz, and U. J. Wiese, Phys. Lett. B 198, 516 (1987).
  10. G. 't Hooft, Nucl. Phys. B 190, 455 (1981).
  11. M. N. Chernodub and M. I. Polikarpov, in Con nement, Duality and Non-perturbative Aspects of QCD, Plenum Press, Cambridge (1998), p. 387; hep-th/9710205.
  12. R. W. Haymaker, Phys. Rept. 315, 153 (1999).
  13. J. Greensite, Prog. Part. Nucl. Phys. 51, 1 (2003).
  14. H. Shiba and T. Suzuki, Phys. Lett. B 333, 461 (1994).
  15. J. D. Stack, S. D. Neiman, and R. J. Wensley, Phys. Rev. D 50, 3399 (1994).
  16. G. 't Hooft, in High Energy Physics, ed. by A. Zichichi, EPS International Conference, Palermo (1975).
  17. S. Mandelstam, Phys. Rep. 23, 245 (1976).
  18. Y. M. Cho, Phys. Rev. D 21, 1080 (1980); doi: 10.1103/PhysRevD.21.1080.
  19. Y. S. Duan and M. L. Ge, Sinica Sci. 11, 1072 (1979).
  20. L. Faddeev and A. J. Niemi, Phys. Rev. Lett. 82, 1624 (1999).
  21. L. D. Faddeev and A. J. Niemi, Nucl. Phys. B 776, 38 (2007).
  22. S. V. Shabanov, Phys. Lett. B 458, 322 (1999).
  23. S. V. Shabanov, Phys. Lett. B 463, 263 (1999).
  24. K. I. Kondo, T. Murakami, and T. Shinohara, Prog. Theor. Phys. 115, 201 (2006).
  25. S. Kato, K. I. Kondo, T. Murakami, A. Shibata, T. Shinohara, and S. Ito, Phys. Lett. B 632, 326 (2006).
  26. K. I. Kondo, S. Kato, A. Shibata, and T. Shinohara, Phys. Rept. 579, 1 (2015).
  27. S. Kato, K. I. Kondo, and A. Shibata, Phys. Rev. D 91(3), 034506 (2015).
  28. J. C. Biddle, W. Kamleh, and D. B. Leinweber, Phys. Rev. D 106(5), 054505 (2022); doi: 10.1103/PhysRevD.106.054505; arXiv:2206.00844 [hep-lat].
  29. A. S. Kronfeld, G. Schierholz, and U. J. Wiese, Nucl. Phys. B 293, 461 (1987).
  30. F. Brandstater, U. J. Wiese, and G. Schierholz, Phys. Lett. B 272, 319 (1991).
  31. V. Bornyakov, G. Schierholz, and T. Streuer, Nucl. Phys. B Proc. Suppl. 106, 676 (2002); doi: 10.1016/S0920-5632(01)01813-8; arXiv:hep-lat/0111018 [hep-lat].
  32. V. G. Bornyakov, H. Ichie, Y. Koma, Y. Mori, Y. Nakamura, D. Pleiter, M. I. Polikarpov, G. Schierholz, T. Streuer, H. Stu�ben, and T. Suzuki, Phys. Rev. D 70, 074511 (2004); doi: 10.1103/PhysRevD.70.074511; arXiv:hep-lat/0310011 [hep-lat].
  33. H. Ohata and H. Suganuma, Phys. Rev. D 102(1), 014512 (2020).
  34. V. G. Bornyakov, M. N. Chernodub, H. Ichie, Y. Koma, Y. Mori, Y. Nakamura, M. I. Polikarpov, G. Schierholz, A. A. Slavnov, H. Stu�ben, T. Suzuki, P. V. Uvarov, and A. I. Veselov, Phys. Rev. D 71, 114504 (2005); doi: 10.1103/PhysRevD.71.114504; arXiv:hep-lat/0401014 [hep-lat].
  35. J. Smit and A. van der Sijs, Nucl. Phys. B 355, 603 (1991).
  36. M. Albanese, F. Costantini, G. Fiorentini et al. (APE), Phys. Lett. B 192, 163 (1987).
  37. S. Necco and R. Sommer, Nucl. Phys. B 622, 328 (2002).
  38. J. D. Stack, W. W. Tucker, and R. J. Wensley, Nucl. Phys. B 639, 203 (2002); doi: 10.1016/S0550-3213(02)00537-0; arXiv:hep-lat/0110196 [hep-lat].
  39. R. Golubich and M. Faber, Particles 3(2), 444 (2020).

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2023 Российская академия наук