Stability of Solid Atomic Nitrogen Phases at Atmospheric Pressure

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

Stability to the formation of vacancies in the bulk of a structure and the possibility of a stable surface have been examined for the first time with density functional theory for high energy density solid atomic nitrogen phases, whose dynamical stability at normal pressure is theoretically predicted. It has been shown that phases with of the 
 and Pccn crystal symmetries are unstable to the formation of vacancies at atmospheric pressure. The 
 and P21 phases are stable with respect to the formation of vacancies, but the surface of such structures introduces instability inducing their transition from a metastable atomic solid phase to a molecular one. The gauche phase of nitrogen with the I213 crystal symmetry is stable with respect to the considered structural perturbations and is the most promising for experimental synthesis at atmospheric pressure.

About the authors

K. S Grishakov

National Research Nuclear University MEPhI (Moscow Engineering Physics Institute), 115409, Moscow, Russia; Research Institute for the Development of Scientific and Educational Potential of Youth, 119620, Moscow, Russia

Email: ksgrishakov@mephi.ru

N. N Degtyarenko

National Research Nuclear University MEPhI (Moscow Engineering Physics Institute), 115409, Moscow, Russia

Author for correspondence.
Email: ksgrishakov@mephi.ru

References

  1. K. S. Grishakov and N. N. Degtyarenko, Phys. Chem. Chem. Phys. 24, 8351 (2022).
  2. Y. Ma, A. R. Oganov, Z. Li, Y. Xie, and J. Kotakoski, Phys. Rev. Lett. 102, 065501 (2009).
  3. D. Laniel, B. Winkler, T. Fedotenko, A. Pakhomova, S. Chariton, V. Milman, V. Prakapenka, L. Dubrovinsky, and N. Dubrovinskaia, Phys. Rev. Lett. 124, 216001 (2020).
  4. D. Tomasino, M. Kim, J. Smith, and C.-S. Yoo, Phys. Rev. Lett. 113, 205502 (2014).
  5. D. Laniel, G. Geneste, G. Weck, M. Mezouar, and P. Loubeyre, Phys. Rev. Lett. 122, 066001 (2019).
  6. M. I. Eremets, A. G. Gavriliuk, N. R. Serebryanaya, I. A. Trojan, D. A. Dzivenko, R. Boehler, H. K. Mao, and R. J. Hemley, J. Chem. Phys. 121, 11296 (2004).
  7. M. I. Eremets, A. G. Gavriliuk, I. A. Trojan, D. A. Dzivenko, and R. Boehler, Nat. Mater. 3, 558 (2004).
  8. C. Mailhiot, L. H. Yang, and A. K. McMahan, Phys. Rev. B 46, 14419 (1992).
  9. F. Zahariev, J. Hooper, S. Alavi, F. Zhang, and T. K. Woo, Phys. Rev. B 75, 140101(R) (2007).
  10. J. Kotakoski and K. Albe, Phys. Rev. B 77, 144109 (2008).
  11. M. M. G. Alemany and J. L. Martins, Phys. Rev. B 68, 024110 (2003).
  12. W. D. Mattson, D. Sanchez-Portal, S. Chiesa, and R. M. Martin, Phys. Rev. Lett. 93, 125501 (2004).
  13. F. Zahariev, A. Hu, J. Hooper, F. Zhang, and T. Woo, Phys. Rev. B 72, 214108 (2005).
  14. A. R. Oganov and C. W. Glass, J. Chem. Phys. 124, 244704 (2006).
  15. K. Grishakov, K. Katin, M. Gimaldinova, and M. Maslov, Letters on Materials 9, 366 (2019).
  16. J. Sun, M. Martinez-Canales, D. D. Klug, C. J. Pickard, and R. J. Needs, Phys. Rev. Lett. 111, 175502 (2013).
  17. A. A. Adeleke, M. J. Greschner, A. Majumdar, B. Wan, H. Liu, Z. Li, H. Gou, and Y. Yao, Phys. Rev. B 96, 224104 (2017).
  18. S. V. Bondarchuk and B. F. Minaev, Phys. Chem. Chem. Phys. 19, 6698 (2017).
  19. K. S. Grishakov and N. N. Degtyarenko, JETP Lett. 112, 630 (2020).
  20. K. S. Grishakov and N. N. Degtyarenko, JETP Lett. 115, 422 (2022).
  21. M. V. Kondrin and V. V. Brazhkin, Nanosystems: Physics, Chemistry, Mathematics 7, 44 (2016).
  22. M. V. Kondrin and V. V. Brazhkin, Phys. Chem. Chem. Phys. 17, 17739 (2015).
  23. M. M. Maslov and K. P. Katin, Chem. Phys. Lett. 644, 280 (2016).
  24. M. M. Maslov, K. P. Katin, A. I. Avkhadieva, and A. I. Podlivaev, Russ. J. Phys. Chem. B 8, 152 (2014).
  25. K. P. Katin and M. M. Maslov, Molecular Simulation 44, 703 (2018).
  26. K. P. Katin, V. S. Prudkovskiy, and M. M. Maslov, Physica E: Low-Dimensional Systems and Nanostructures 81, 1 (2016).
  27. I. S. Novikov, K. Gubaev, E. V. Podryabinkin, and A. V. Shapeev, Machine Learning: Science and Technology 2, 025002 (2021).
  28. P. Giannozzi, S. Baroni, N. Bonini, M. Calandra, R. Car, C. Cavazzoni, and D. Ceresoli, J. Phys.: Condens. Matter 21, 395502 (2009).
  29. P. Giannozzi, O. Andreussi, T. Brumme, O. Bunau, M. B. Nardelli, M. Calandra, and R. Car, J. Phys.: Condens. Matter 29, 465901 (2017).
  30. D. R. Hamann, Phys. Rev. B: Condens. Matter Mater. Phys. 88, 085117 (2013).
  31. Q. S. Mei and K. Lu, Philosophical Magazine Letters 88, 203 (2008).
  32. Q. Wei, C. Zhao, M. Zhang, H. Yan, and B. Wei, Phys. Lett. A 383, 2429 (2019).
  33. Z. Liu, D. Li, Q. Zhuang, F. Tian, D. Duan, F. Li, and T. Cui, Commun. Chem. 3, 42 (2020).
  34. N. P. Salke, K. Xia, S. Fu, Y. Zhang, E. Greenberg, V. B. Prakapenka, J. Liu, J. Sun, and J.-F. Lin, Phys. Rev. Lett. 126, 065702 (2021).
  35. Y. Wang, M. Bykov, I. Chepkasov, A. Samtsevich, E. Bykova, X. Zhang, S. Jiang, E. Greenberg, S. Chariton, V. B. Prakapenka, A. R. Oganov, and A. F. Goncharov, Nat. Chem. 14, 794 (2022).
  36. D. Laniel, F. Trybel, Y. Yin, T. Fedotenko, S. Khandarkhaeva, and A. Aslandukov, Nat. Chem. (2023).
  37. L. Gagliardi and P. Pyykk�o, J. Am. Chem. Soc. 123, 9700 (2001).
  38. M. Straka and P. Pyykk�o, Inorg. Chem. 42, 8241 (2003).
  39. K. Ding, X. Li, H. Xu, T. Li, Z. Ge, Q. Wang, and W. Zheng, Chem. Sci. 6, 4723 (2015).
  40. L. Gagliardi and P. Pyykk�o, Theoretical Chemistry Accounts: Theory, Computation, and Modeling (Theoretica Chimica Acta) 110, 205 (2003).
  41. M. Straka, Chem. Phys. Lett. 358, 531 (2002).
  42. M.-H. V. Huynh, M. A. Hiskey, E. L. Hartline, D. P. Montoya, and R. Gilardi, Angew. Chem. 116, 5032 (2004).
  43. K. Banert, Y.-H. Joo, T.Ru� er, B. Walfort, and H. Lang, Angewandte Chemie International Edition 46, 1168 (2007).
  44. S. V. Chapyshev, Russian Chemical Bulletin 60, 1274 (2011).
  45. M. Bencha a, Z. Yao, G. Yuan, T. Chou, H. Piao, X. Wang, and Z. Iqbal, Nat.Commun. 8, 930 (2017).

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2023 Российская академия наук