Joint Intercalation of Ultrathin Fe and Co Films under a Graphene Buffer Layer on a SiC(0001) Single Crystal

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

The joint intercalation of Co and Fe atoms under a graphene buffer layer synthesized on a SiC(0001) single crystal has been studied. Intercalation has been performed by means of the alternating deposition of ultrathin Fe and Co metal films on the substrate heated to 450°C with the subsequent heating to 600°C in 15 min. It has been shown that Co and Fe atoms under these conditions are intercalated under graphene, forming compounds with silicon and with each other. The existence of a magnetic order in the system up to room temperature has been demonstrated using a superconducting quantum interferometer. A possible stoichiometry of the formed alloys has been analyzed using data on the shape and magnitude of hysteresis loops. In addition, it has been found that Fe and Co in the system exposed to the atmosphere are not oxidized. Thus, graphene protects the formed system. This study makes contribution to the investigation of graphene in contact with magnetic metals and promotes its application in spintronic and nanoelectronic devices.

About the authors

S. O Fil'nov

St. Petersburg State University

Email: sfilnov@gmail.com
198504, St. Petersburg, Russia

D. A Estyunin

St. Petersburg State University

Email: sfilnov@gmail.com
198504, St. Petersburg, Russia

I. I Klimovskikh

St. Petersburg State University; Center for Promising Methods of Mesophysics and Nanotechnologies, Moscow Institute of Physics and Technology (National Research University)

Email: sfilnov@gmail.com
198504, St. Petersburg, Russia; 141701, Dolgoprudnyi, Moscow region, Russia

T. P Makarova

St. Petersburg State University

Email: sfilnov@gmail.com
198504, St. Petersburg, Russia

A. V Koroleva

St. Petersburg State University

Email: sfilnov@gmail.com
198504, St. Petersburg, Russia

A. A Rybkina

St. Petersburg State University

Email: sfilnov@gmail.com
198504, St. Petersburg, Russia

R. G Chumakov

National Research Center Kurchatov Institute

Email: sfilnov@gmail.com
123182, Moscow, Russia

A. M Lebedev

National Research Center Kurchatov Institute

Email: sfilnov@gmail.com
123182, Moscow, Russia

O. Yu Vilkov

St. Petersburg State University

Author for correspondence.
Email: sfilnov@gmail.com
198504, St. Petersburg, Russia

References

  1. A.K. Geim and K. S. Novoselov, Nat. Mater. 6, 183 (2007).
  2. M. J. Allen, V.C. Tung, and R.B. Kaner, Chem. Rev. 110, 132 (2010).
  3. A.M. Shikin, V.K. Adamchuk, S. Siebentritt, K.-H. Rieder, S. L. Molodtsov, and C. Laubschat, Phys. Rev. B 61, 7752 (2000).
  4. A.M. Shikin, D. Farias, V.K. Adamchuk, and K.H. Rieder, Surf. Sci. 424, 155 (1999).
  5. S.K. Tiwari, S. Sahoo, N. Wang, and A. Huczko, Journal of Science: Advanced Materials and Devices 5, 1 (2020).
  6. D.-D. Wu and H.-H. Fu, Nanotechnology 32, 245703 (2021).
  7. C. L. Kane and E. J. Mele, Phys. Rev. Lett. 95, 226801 (2005).
  8. P. H¨ogl, T. Frank, K. Zollner, D. Kochan, M. Gmitra, and J. Fabian, Phys. Rev. Lett. 124, 136403 (2020).
  9. A.V. Fedorov, N. I. Verbitskiy, D. Haberer, C. Struzzi, L. Petaccia, D. Usachov, O.Y. Vilkov, D.V. Vyalikh, J. Fink, M. Knupfer, B. B¨uchner, and A. Gr¨uneis, Nat. Commun. 5, 3257 (2014).
  10. B.M. Ludbrook, G. Levy, P. Nigge et al. Collaboration), Proceedings of the National Academy of Sciences 112, 11795 (2015).
  11. X. Du, I. Skachko, A. Barker, and E.Y. Andrei, Nature Nanotech. 3, 491 (2008).
  12. L. Banszerus, M. Schmitz, S. Engels, M. Goldsche, K. Watanabe, T. Taniguchi, B. Beschoten, and Ch. Stampfer, Nano Lett. 16, 2 (2016).
  13. M. Dr¨ogeler, Ch. Franzen, F. Volmer, T. Pohlmann, L. Banszerus, M. Wolter, K. Watanabe, T. Taniguchi, Ch. Stampfer, and B. Beschoten, Nano Lett. 16, 3533 (2016).
  14. M. Venkata Kamalakar, Ch. Groenveld, A. Dankert, and S.P. Dash, Nat. Commun. 6, 6766 (2015).
  15. S. Sato, Jpn. J. Appl. Phys. 54, 4 (2015).
  16. E.C. Ahn, npj 2D Mater. Appl. 4, 17 (2020).
  17. A.G. Rybkin, A.A. Rybkina, M.M. Otrokov, O.Yu. Vilkov, I. I. Klimovskikh, A.E. Petukhov, M.V. Filianina, V.Yu. Voroshnin, I.P. Rusinov, A. Ernst, A. Arnau, E.V. Chulkov, and A.M. Shikin, Nano Lett. 18(3), 1564 (2018).
  18. A.G. Rybkin, A.V. Tarasov, A.A. Rybkina, D.Yu. Usachov, A.E. Petukhov, A.V. Eryzhenkov, D.A. Pudikov, A.A. Gogina, I. I. Klimovskikh, G. Di Santo, L. Petaccia, A. Varykhalov, and A.M. Shikin, Phys. Rev. Lett. 129, 226401 (2022).
  19. Y.G. Semenov, K.W. Kim, J.M. Zavada, Appl. Phys. Lett. 91, 15 (2007).
  20. S. Bae, H. Kim, Y. Lee, et al. (Collaboration), Nature Nanotechnology 5, 574 (2010).
  21. H. Ago, Y. Ito, N. Mizuta, K. Yoshida, B. Hu, C.M. Orofeo, M. Tsuji, K.-i. Ikeda, and S. Mizuno, ACS Nano 4, 7407 (2010).
  22. A.V. Fedorov, A.Yu. Varykhalov, A.M. Dobrotvorskii, A.G. Chikina, V.K. Adamchuk, and D.Yu. Usachov, Phys. Solid State 53, 1952 (2011).
  23. Y. Zhang, L. Zhang, and C. Zhou, Acc. Chem. Res. 46, 2329 (2013).
  24. D.Yu. Usachov, K.A. Bokai, D.E. Marchenko, A.V. Fedorov, V.O. Shevelev, O.Yu. Vilkov, E.Yu. Kataev, L.V. Yashina, E. R¨uhl, C. Laubschatf, and D.V. Vyalikh, Nanoscale 10, 12123 (2018).
  25. I. I. Klimovskikh, M.M. Otrokov, V.Yu. Voroshnin, D. Sostina, L. Petaccia, G. Di Santo, S. Thakur, E.V. Chulkov, and A.M. Shikin, ACS Nano 11, 368 (2017).
  26. Y. Wang, F. Qing, Y. Jia, Y. Duan, Ch. Shen, Y. Hou, Y. Niu, H. Shi, and X. Li, Chemical Engineering Journal 405, 127014 (2021).
  27. D.A. Estyunin, I. I. Klimovskikh, V.Yu. Voroshnin, D.M. Sostina, L. Petaccia, G. Di Santo, and A.M. Shikin, JETP 125, 762 (2017).
  28. M.M. Otrokov, I. I. Klimovskikh, F. Calleja, A.M. Shikin, O. Vilkov, A.G. Rybkin, D. Estyunin, S. Muff, J.H. Dil, A.L. V'azquez de Parga, R. Miranda, H. Ochoa, F. Guinea, J. I. Cerd'a, E.V. Chulkov, and A. Arnau, 2D Materials 5, 035029 (2018).
  29. C. Berger, Zh. Song, T. Li, X. Li, A.Y. Ogbazghi, R. Feng, Zh. Dai, A.N. Marchenkov, E.H. Conrad, Ph.N. First, and W.A. de Heer, J. Phys. Chem. B 108, 19912 (2004).
  30. M.G. Mynbaeva, A.A. Lavrent'ev, and K.D. Mynbaev, Semiconductors 50, 138 (2016).
  31. C. Riedl, C. Coletti, and U. Starke, J. Phys. D 43, 374009 (2010).
  32. K.V. Emtsev, F. Speck, T. Seyller, L. Ley, and J.D. Riley, Phys. Rev. B 77, 155303 (2008).
  33. D. De Fazio, D.G. Purdie, A.K. Ott, Ph. Braeuninger- Weimer, T. Khodkov, S. Goossens, T. Taniguchi, K. Watanabe, P. Livreri, F.H. L. Koppens, S. Hofmann, I. Goykhman, A.C. Ferrari, and A. Lombardo, ACS Nano 13, 8926 (2019).
  34. A.A. Rybkina, S.O. Filnov, A.V. Tarasov, D.V. Danilov, M.V. Likholetova, V.Yu. Voroshnin, D.A. Pudikov, D.A. Glazkova, A.V. Eryzhenkov, I.A. Eliseyev, V.Yu. Davydov, A.M. Shikin, and A.G. Rybkin, Phys. Rev. B 104, 155423 (2021).
  35. S. J. Sung, J.W. Yang, P.R. Lee, J.G. Kim, M.T. Ryu, H.M. Park, G. Lee, C.C. Hwang, K. S. Kim, J. S. Kima, and J.W. Chung, Nanoscale 6, 3824 (2014).
  36. S.O. Filnov, A.A. Rybkina, A.V. Tarasov, A.V. Eryzhenkov, I.A. Eliseev, V.Yu. Davydov, A.M. Shikin, and A.G. Rybkin, JETP 134, 188 (2022).
  37. K. Shen, H. Sun, J. Hu, et al., The Journal of Physical Chemistry C 122, 37 (2018).
  38. M.V. Gomoyunova, G. S. Grebenyuk, V.Yu. Davydov, I.A. Ermakov, I.A. Eliseyev, A.A. Lebedev, S.P. Lebedev, E.Yu. Lobanova, A.N. Smirnov, D.A. Smirnov, and I. I. Pronin, Phys. Solid State 60, 1439 (2018).
  39. G. S. Grebenyuk, E.Yu. Lobanova, D.A. Smirnov, I.A. Eliseyev, A.V. Zubov, A.N. Smirnov, S.P. Lebedev, V.Yu. Davydov, A.A. Lebedev, and I. I. Pronin, Phys. Solid State 61(7), 1374 (2019).
  40. N.A. Anderson, M. Hupalo, D. Keavney, M.C. Tringides, and D. Vaknin, Phys. Rev. Materials 1, 054005 (2017).
  41. P.D. Bentley, T.W. Bird, A.P. J. Graham, O. Fossberg, S.P. Tear, and A. Pratt, AIP Adv. 11, 025314 (2021).
  42. N.A. Anderson, M. Hupalo, D. Keavney, M. Tringides, and D. Vaknin, J. Magn. Magn. Mater. 474, 666 (2019).
  43. V.N. Narozhnyi and V.N. Krasnorussky, JETP 116, 780 (2013).
  44. E.V. Ganapathy, K. Kugimiya, H. Steinfink, and D. I. Tchernev, Journal of the Less Common Metals 44, 245 (1976).
  45. I. Goldfarb, F. Cesura, and M. Dascalu, Adv. Mater 30, 1800004 (2018).
  46. A. J. van Bommel, J. E. Crombeen, and A. van Tooren, Surf. Sci. 48, 463 (1975).
  47. J.N. Hausmann, R. Beltr'an-Suito, S. Mebs, V. Hlukhyy, Th. F. F¨assler, H. Dau, M. Driess, and P.W. Menezes, Adv. Mater. 33, 27, 2008823 (2021).
  48. D. S. Jensen, S. S. Kanyal, and N. Madaan, Surface Science Spectra 20, 36 (2013).
  49. H.-f. Li, S. Dimitrijev, D. Sweatman, H. Barry Harrison, and Ph. Tanner, J. Appl. Phys. 86, 4316 (1999).
  50. JooHyung Kim, JungYup Yang, JunSeok Lee and JinPyo Hong, Appl. Phys. Lett. 92, 013512 (2008).
  51. V. Kinsinger, I. Dezsi, P. Steiner, and G. Langouche, J. Phys. Condens. Matter 2, 22 (1990).
  52. M.C. Biesinger, B.P. Payne, A.P. Grosvenor, L.W.M. Lau, A.R. Gerson, and R. St.C. Smart, Applied Surface Science 257, 2717 (2011).
  53. Y. Shin, D.A. Tuan, Y. Hwang, T.V. Cuong, and S. Cho, J. Appl. Phys. 113, 17C306 (2013).
  54. A. Zeleˇnkov'a, V. Zeleˇn'ak, I. Mat'ko, M. Streˇckov'a, P. Hrubovˇc'ak, and J. Kov'aˇc, J. Appl. Phys. 116, 033907 (2014).
  55. S. Bedanta and W. Kleemann, J. Phys. D: Appl. Phys. 42, 013001 (2009).
  56. O. Sendetskyi, L. Anghinolfi, V. Scagnoli, G. M¨oller, N. Leo, A. Alberca, J. Kohlbrecher, J. L¨uning, U. Staub, and L. J. Heyderman, Phys. Rev. B 93, 224413 (2016).
  57. M. Perzanowski, A. Zarzycki, J. Gregor-Pawlowski, and M. Marszalek, ACS Appl. Mater. Interfaces 8, 28159 (2016).
  58. Ch.-Y. Yang, Sh.-M. Yang, Y.-Y. Chen, and K.-Ch. Lu, Nanoscale Res. Lett. 15, 197 (2020).
  59. K. Seo, K. S.K. Varadwaj, P. Mohanty, S. Lee, Y. Jo, M.-H. Jung, J. Kim, and B. Kim, Nano Lett. 7(5), 1240 (2007).
  60. M. Ziese, I. Vrejoiu, and D. Hesse, Appl. Phys. Lett. 97, 052504 (2010).
  61. V. Asvini, G. Saravanan, R.K. Kalaiezhily, and K. Ravichandran, AIP Conf. Proc. 1942, 1 (2018).
  62. W. Zhu, Zh. Zhu, D. Li, G. Wu, L. Xi, Q.Y. Jin, and Z. Zhang, Journal J. Magn. Magn. Mater. 479, 179 (2019).
  63. I. Goldfarb, F. Cesura, and M. Dascalu, Adv. Mater. 30(41), 1800004 (2018).
  64. H. Xu, A.C.H. Huan, A.T. S. Wee, and D.M. Tong, Solid State Commun. 126, 659 (2003).
  65. H. Xu, A.C.H. Huan, A.T. S. Wee, and D.M. Tong, J. Appl. Phys. 109, 023908 (2011).
  66. Z. J. Huba, K. J. Carroll, and E.E. Carpenter, J. Appl. Phys. 109, 07B514 (2011).
  67. T. Hasegawa, Journal of Applied Physics Electronics and Communications in Japan 104, 2 (2021).
  68. M. Belusky, S. Lepadatu, J. Naylor, and M. Vopson, Physica B: Condensed Matter 574, 411666 (2019).
  69. A.M. Lebedev, K.A. Menshikov, V.G. Nazin, V.G. Stankevich, M.B. Tsetlin, and R.G. Chumakov, Journal of Surface Investigation: X-ray, Synchrotron and Neutron Techniques 15, 1039 (2021).

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2023 Российская академия наук