Interplay between Magnetism and Topology in MnBi2Te4
- Authors: Val'kov V.V.1, Zlotnikov A.O.1, Gamov A.1
-
Affiliations:
- Kirensky Institute of Physics, Federal Research Center KSC, Siberian Branch, Russian Academy of Sciences
- Issue: Vol 118, No 5-6 (9) (2023)
- Pages: 330-337
- Section: Articles
- URL: https://rjonco.com/0370-274X/article/view/663063
- DOI: https://doi.org/10.31857/S1234567823170044
- EDN: https://elibrary.ru/JZNNVQ
- ID: 663063
Cite item
Abstract
The dependence of the topology of the fermion excitation spectrum on the magnetic state of the system is analyzed taking into account the structure of the Te–Mn–Te trilayer in the Te–Bi–Te–Mn–Te–Bi–Te layer sequence of the MnBi2Te4 van der Waals single crystal, crystal field effects, spin–orbit coupling, and the covalent mixing of electronic states of Mn2+ ions with electronic states of Te2– ions in the strong electron correlation regime. The Chern number in the ferromagnetic phase, which is due to the kinematic interaction between Hubbard fermions, is equal to 1; i.e., the topology of the band structure of the Te–Mn–Te trilayer is nontrivial. The Chern number in the paramagnetic phase is zero; i.e., the topology is trivial. The magnetic moments of Mn2+ ions for the constructed spin orbitals are perpendicular to the layers. The magnetic moments of Mn2+ ions in the nearest layers are antiferromagnetically ordered via the Anderson mechanism.
About the authors
V. V. Val'kov
Kirensky Institute of Physics, Federal Research Center KSC, Siberian Branch, Russian Academy of Sciences
Email: vvv@iph.krasn.ru
660036, Krasnoyarsk, Russia
A. O. Zlotnikov
Kirensky Institute of Physics, Federal Research Center KSC, Siberian Branch, Russian Academy of Sciences
Email: vvv@iph.krasn.ru
660036, Krasnoyarsk, Russia
A. Gamov
Kirensky Institute of Physics, Federal Research Center KSC, Siberian Branch, Russian Academy of Sciences
Author for correspondence.
Email: vvv@iph.krasn.ru
660036, Krasnoyarsk, Russia
References
- R. Yu, W. Zhang, H.-J. Zhang, S.-C. Zhang, X. Dai, and Z. Fang, Science 329, 61 (2010).
- X.-L. Qi and S.-C. Zhang, Rev. Mod. Phys. 83, 1057 (2011).
- C.-Z. Chang, J. Zhang, X. Feng et al. (Collaboration), Science 340, 167 (2013).
- D. Zhang, M. Shi, T. Zhu, D. Xing, H. Zhang, and J. Wang, Phys. Rev. Lett. 122, 206401 (2019).
- M. M. Otrokov, I. I. Klimovskikh, H. Bentmann et al. (Collaboration), Nature 576, 416 (2019).
- J. Li, Y. Li, S. Du, Z. Wang, B.-L. Gu, S.-C. Zhang, K. He, W. Duan, and Y. Xu, Sci. Adv. 5, eaaw5685 (2019).
- Y. Gong, J. Guo, J. Li et al. (Collaboration), Chinese Phys. Lett. 36, 076801 (2019).
- R. S. K. Mong, A. M. Essin, and J. E. Moore, Phys. Rev. B 81, 245209 (2010).
- D. S. Lee, T.-H. Kim, C.-H. Park, C.-Y. Chung, Y. S. Lim, W.-S. Seo, and H.-H. Park, CrystEngComm 15, 5532 (2013).
- Y. Li, Z. Jiang, J. Li, S. Xu, and W. Duan, Phys. Rev. B 100, 134438 (2019).
- B. Li, J.-Q. Yan, D. M. Pajerowski, E. Gordon, A.-M. Nedi, Y. Sizyuk, L. Ke, P. P. Orth, D. Vaknin, and R. J. McQueeney, Phys. Rev. Lett. 124, 167204 (2020).
- H.-P. Sun, C. M. Wang, S.-B. Zhang, R. Chen, Y. Zhao, C. Liu, Q. Liu, C. Chen, H.-Z. Lu, and X. C. Xie, Phys. Rev. B 102, 241406 (2020).
- M. M. Otrokov, I. P.Rusinov, M. Blanco-Rey, M. Ho mann, A. Yu. Vyazovskaya, S. V. Eremeev, A. Ernst, P. M. Echenique, A. Arnau, and E. V. Chulkov, Phys. Rev. Lett. 122, 107202 (2019).
- А. М. Шикин, Д. А. Естюнин, Д. А. Глазкова, С. О. Фильнов, И. И. Климовских, Письма в ЖЭТФ 115, 241 (2022).
- С. А. Альтшулер, Б. М. Козырев, Электронный парамагнитный резонанс соединений элементов переходных групп, Наука, М. (1972).
- K. W. H. Stewens, Proc. Phys. Soc. A 65, 209 (1952).
- К. Бальхаузен, Введение в теорию поля лигандов, Мир, М. (1964).
- J. Hubbard, Proc. Roy. Soc. A 276, 238 (1963).
- B. A. Bernevig, T. L. Hughes, and S.-C. Zhang, Science 314, 1757 (2006).
- X. Dang, J. D. Burton, A. Kalitsov, J. P. Velev, and E. Y. Tsymbal, Phys. Rev. B. 90, 155307 (2014).
- В. В. Вальков, Письма в ЖЭТФ 111, 772 (2020).
- В. В. Вальков, Письма в ЖЭТФ 114, 812 (2021).
- J. Hubbard, Proc. R. Soc. A 285, 542 (1965).
- Р. О. Зайцев, ЖЭТФ 68, 207 (1975).
- Р. О. Зайцев, ЖЭТФ 70, 1100 (1976).
- Y. Nagaoka, Phys. Rev. 147, 392 (1966).
- Ю. А. Изюмов, УФН 161(11), 1 (1991).
- Ю. А. Изюмов, УФН 165, 403 (1995).
- Ю. А. Изюмов, УФН 167, 465 (1997).
- Н. Н. Боголюбов, Изв. Ан. СССР. Сер. физ. VI(1), 77 (1947).
- Д. Н. Зубарев Неравновесная статистическая термодинамика, Наука, М. (1971).
- R. Zwanzig, Phys. Rev. 124, 983 (1961).
- H. Mori, Prog. Theor. Phys. 33, 423 (1965).
- D. J. Thouless, M. Kohmoto, M. P. Nightingale, and M. den Nijs, Phys. Rev. Lett. 49, 405 (1982).
- J. K. Asboth, L. Oroszlany, and A. Palyi, A Short Course on Topological Insulators, The Series Lecture Notes in Physics, Springer, Heidelberg (2016), v. 919.
- В. В. Вальков, В. А. Мицкан, А. О. Злотников, М. С. Шустин, С. В. Аксенов, Письма в ЖЭТФ 110, 126 (2019).
- Р. О. Зайцев, ЖЭТФ 123, 325 (2003).
Supplementary files
