Twin Bound States in the Continuum in a Waveguide Fabry–Pérot Resonator

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

We study bound states in the continuum (BICs) in a Fabry–Pérot (FP) resonator within a quantum-mechanical waveguide. We show that besides typical FP BICs corresponding to a discrete set of cavity lengths, there is a pair of symmetric and antisymmetric twin BICs (TBICs) if isolated mirrors possess BIC themselves. In contrast to the FP BIC, the TBIC does not require the formation of standing waves of the FP resonance between the mirrors. Therefore, the energy and parameters of TBICs are almost independent of the length of the FP resonator, and their wavefunctions have an exponentially small amplitude between the mirrors. Results of the numerical simulation of the 2D quantum-mechanical waveguide with attractive potentials (“impurities”) playing the role of mirrors of an FP resonator are supported by the illustrative analytical model.

About the authors

N. M. Shubin

Lebedev Physical Institute of the Russian Academy of Sciences

Email: gorbatsevichaa@lebedev.ru
119991, Moscow, Russia

V. V. Kapaev

Lebedev Physical Institute of the Russian Academy of Sciences

Email: gorbatsevichaa@lebedev.ru
119991, Moscow, Russia

A. A. Gorbatsevich

Lebedev Physical Institute of the Russian Academy of Sciences

Author for correspondence.
Email: orbatsevichaa@lebedev.ru
119991, Moscow, Russia

References

  1. C. W. Hsu, B. Zhen, A. D. Stone, J. D. Joannopoulos, and M. Soljaˇci'c, Nat. Rev. Mater. 1, 16048 (2016).
  2. A. F. Sadreev, Rep. Prog. Phys. 84, 055901 (2021).
  3. К. Л. Кошелев, З. Ф. Садриева, А. А. Щербаков, Ю. С. Кившарь, А. А. Богданов, УФН 193, 528 (2023).
  4. A. Kodigala, T. Lepetit, Q. Gu, B. Bahari, Y. Fainman, and B. Kant'e, Nature 541, 196 (2017).
  5. K. Koshelev, S. Kruk, E. Melik-Gaykazyan, J. H. Choi, A. Bogdanov, H.-G. Park, and Yu. Kivshar, Science 367, 288 (2020).
  6. M. S. Hwang, H. C. Lee, K. H. Kim, K. Y. Jeong, S.-H. Kwon, K. Koshelev, Yu. Kivshar, and H.-G. Park, Nat.Commun. 12, 4135 (2021).
  7. М. Ю. Губин, А. В. Шестериков, В. С. Волков, А. В. Прохоров, Письма в ЖЭТФ 117, 273 (2023).
  8. L. Carletti, S. S. Kruk, A. A. Bogdanov, C. De Angelis, and Yu. Kivshar, Phys. Rev. Res. 1, 023016 (2019).
  9. F. Yesilkoy, E. R. Arvelo, Y. Jahani, M. Liu, A. Tittl, V. Cevher, Yu. Kivshar, and H. Altug, Nat. Photonics 13, 390 (2019).
  10. E. Bulgakov, A. Pilipchuk, and A. Sadreev, Phys. Rev. B 106, 075304 (2022).
  11. L. Huang, B. Jia, Y. K. Chiang, S. Huang, C. Shen, F. Deng, T. Yang, D. A. Powell, Y. Li, and A. E. Miroshnichenko, Adv. Sci. 9, 2200257 (2022).
  12. N. M. Shubin, J. Math. Phys. 64, 042103 (2023).
  13. B. Zhen, C. W. Hsu, L. Lu, A. D. Stone, and M. Soljaˇci'c, Phys. Rev. Lett. 113, 257401 (2014).
  14. H. M. Doeleman, F. Monticone, W. den Hollander, A. Alu, and A. F. Koenderink, Nat. Photonics 12, 397 (2018).
  15. M. Kang, S. Zhang, M. Xiao, and H. Xu, Phys. Rev. Lett. 126, 117402 (2021).
  16. H. Friedrich and D. Wintgen, Phys. Rev. A 32, 3231 (1985).
  17. T. V. Shahbazyan and M. E. Raikh, Phys. Rev. B 49, 17123 (1994).
  18. Sh. Fan, P. R. Villeneuve, J. D. Joannopoulos, M. J. Khan, C. Manolatou, and H. A. Haus, Phys. Rev. B 59, 15882 (1999).
  19. Ч. С. Ким, О. Н. Рознова, А. М. Сатанин, В. Б. Штенберг, ЖЭТФ 121, 1157 (2002).
  20. E. N. Bulgakov and A. F. Sadreev, JETP Lett. 90, 744 (2010).
  21. A. F. Sadreev, E. N. Bulgakov, and I. Rotter, JETP Lett. 82, 498 (2005).
  22. D. C. Marinica, A. G. Borisov, and S. V. Shabanov, Phys. Rev. Lett. 100, 183902 (2008).
  23. N. M. Shubin, V. V. Kapaev and A. A. Gorbatsevich, Phys. Rev. B 106, 125425 (2022).
  24. N. M. Shubin, V. V. Kapaev, and A. A. Gorbatsevich, Phys. Rev. B 104, 125414 (2021).
  25. C. S. Kim, A. M. Satanin, Y. S. Joe, and R. M. Cosby, Phys. Rev. B 60, 10962 (1999).
  26. Н. М. Шубин, В. В. Капаев, А. А. Горбацевич, Письма в ЖЭТФ 116, 204 (2022).
  27. J. Sanchez-Dehesa, J. A. Porto, F. Agullo-Rueda, and F. Meseguer, J. Appl. Phys. 73, 5027 (1993).
  28. G. N. Henderson, T. K. Gaylord, and E. N. Glytsis, Proc. IEEE 79, 1643 (1991).
  29. M. Asada, Y. Miyamoto, and Y. Suematsu, IEEE J. Quantum Electron 22, 1915 (1986).
  30. A. A. Gorbatsevich and V. V. Kapaev, Russ. Microelectron. 36, 1 (2007).
  31. А. Ф. Садреев, А. С. Пилипчук, Письма в ЖЭТФ 100, 664 (2014).
  32. A. F. Sadreev, D. N. Maksimov, and A. S. Pilipchuk, J. Phys. Condens. Matter. 27, 295303 (2015).
  33. M. L. L. De Guevara, F. Claro, and P. A. Orellana, Phys. Rev. B 67, 195335 (2003).
  34. A. A. Gorbatsevich and N. M. Shubin, Phys. Rev. B 96, 205441 (2017).
  35. F. Remacle, M. Munster, V. Pavlov-Verevkin, and M. Desouter-Lecomte, Phys. Lett. A 145, 265 (1990).

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2023 Российская академия наук