Two Dynamical Regimes of Coherent Columnar Vortices in a Rotating Fluid

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

Vortex flow generation in an incompressible fluid was investigated experimentally inside a rotating closed cubic aquarium. The flow was excited by producing small-scale eddies near the side edges of the cube. Coherent columnar vortices-cyclones extending from the bottom to the lid of the cube were observed in the liquid volume. The lifetime of the cyclones was much longer than the attenuation time due to the viscous friction on the bottom and the lid. It was found that there are two regimes of quasi-two-dimensional turbulence, which are characterized by different ways of interaction between quasi two-dimensional flow and inertial waves. The radial profiles of the time- averaged azimuth velocity in the coherent vortices in these two regimes are investigated. It is shown that the vortices differ in size and in vorticity distribution along the radius.

About the authors

D. D. Tumachev

Landau Institute for Theoretical Physics, Russian Academy of Sciences;Osipyan Institute of Solid State Physics, Russian Academy of Sciences

Email: d.tumachev@issp.ac.ru
142432, Chernogolovka, Moscow region, Russia;142432, Chernogolovka, Moscow region, Russia

S. V. Filatov

Landau Institute for Theoretical Physics, Russian Academy of Sciences;Osipyan Institute of Solid State Physics, Russian Academy of Sciences

Email: d.tumachev@issp.ac.ru
142432, Chernogolovka, Moscow region, Russia;142432, Chernogolovka, Moscow region, Russia

S. S. Vergeles

Landau Institute for Theoretical Physics, Russian Academy of Sciences;Faculty of Physics, National Research University Higher School of Economics

Email: d.tumachev@issp.ac.ru
142432, Chernogolovka, Moscow region, Russia;101000, Moscow, Russia

A. A. Levchenko

Landau Institute for Theoretical Physics, Russian Academy of Sciences;Osipyan Institute of Solid State Physics, Russian Academy of Sciences;Faculty of Physics, National Research University Higher School of Economics

Author for correspondence.
Email: d.tumachev@issp.ac.ru
142432, Chernogolovka, Moscow region, Russia;142432, Chernogolovka, Moscow region, Russia;101000, Moscow, Russia

References

  1. H. P. Greenspan, The theory of rotating uids, At the University Press, Cambridge (1968).
  2. P. A. Davidson, Turbulence in Rotating, Strati ed and Electrically Conducting Fluids, Cambridge University Press, Cambridge (2013).
  3. S. J. Beresh, Meas. Sci. Technol. 32, 102003 (2021).
  4. U. Frisch, Turbulence: the legacy of A.N. Kolmogorov, Cambridge University Press, Cambridge (1995).
  5. S. B. Pope, Turbulent ows, Cambridge University Press, Cambridge (2000).
  6. G. Bo etta and R. E. Ecke, Ann. Rev. Fluid. Mech. 44, 427 (2012).
  7. J. Sommeria, J. Fluid Mech. 170, 139 (1986).
  8. Нелинейные волны. Самоорганизация, под ред. А. В. Гапонов-Грехов, М. И. Рабинович, Наука, М. (1983).
  9. S. K. Robinson, Ann. Rev. Fluid. Mech. 23, 601 (1991).
  10. J. Laurie, G. Bo etta, G. Falkovich, I. Kolokolov, and V. Lebedev, Phys. Rev. Lett. 113, 254503 (2014).
  11. A. McEwan, Nature 260, 126 (1976).
  12. F. S. Godeferd and F. Moisy, Appl. Mech. Rev. 67, 030802 (2015).
  13. A. Alexakis and L. Biferale, Phys. Rep. 767, 1 (2018).
  14. A. Campagne, B. Gallet, F. Moisy, and P.-P. Cortet, Phys. Rev. E 91, 043016 (2015).
  15. F. Pizzi, G. Mamatsashvili, A. J. Barker, A. Giesecke and F. Stefani, Phys. Fluids 34, 125135 (2022).
  16. I. Kolokolov, L. Ogorodnikov, and S. Vergeles, Phys. Rev. Fluids 5, 034604 (2020).
  17. V. M. Parfenyev and S. S. Vergeles, Phys. Fluids 33, 115128 (2021).
  18. W. Thielicke and R. Sonntag, Journal of Open Research Software 9, 12 (2021).
  19. E. Stamhuis and W. Thielicke, Journal of Open Research Software 2, 30 (2014).
  20. E. Monsalve, M. Brunet, B. Gallet, and P.-P. Cortet, Phys. Rev. Lett. 125, 254502 (2020).
  21. N. Lanchon, D. O. Mora, E. Monsalve, and P.-P. Cortet, Phys. Rev. Fluids 8, 054802 (2023).
  22. C. Morize, F. Moisy, and M. Rabaud, Phys. Fluids 17, 095105 (2005).
  23. E. Hop nger, F. Browand, and Y. Gagne, J. Fluid Mech. 125, 505 (1982).
  24. J. E.Ruppert-Felsot, O. Praud, E. Sharon, and H. L. Swinney, Phys. Rev. E 72, 016311 (2005).
  25. A. V. Orlov, M. Y. Brazhnikov, and A. A. Levchenko, JETP Lett. 107, 157 (2018).
  26. L. Z. Sans'on and G. van Heijst, J. Fluid Mech. 412, 75 (2000).
  27. I. Kolokolov and V. Lebedev, Phys. Rev. E 93, 033104 (2016).
  28. L. Jacquin, O. Leuchter, C. Cambonxs, and J. Mathieu, J. Fluid Mech. 220, 1 (1990).
  29. V. M. Parfenyev, I. A. Vointsev, A. O. Skoba, and S. S. Vergeles, Phys. Fluids 33, 065117 (2021).
  30. A. Frishman and C. Herbert, Phys. Rev. Lett. 120, 204505 (2018).

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2023 Российская академия наук